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The Real Numbers

1.1 Axioms of Real Numbers

(Al) a+b=b+a,Va,beR,

(A2) (a+b)+c=(@+((b+c),YabceR,

(A3) 30eR,st.0+a=a=a+0VaeR,

(A4 VaeR,IbeR,s.t. a+ b=0=>b+ a. Then we denote this b as —a,
M1) a-b=b-aVabeR.

M2) (a-b)-c=a-(b-c)Va,b,ceR,

M3) d1eR,st.1l-a=a=a-1Va€eR,

M4) VaeR\ {0}, HbE[R,s.t.a-b:l=b-a.Thenwedenotethisbasl,
a

M) a-(b+c)=a-b+a-cVabceR,

D2) 0#1,

(01) Given a, b € R, there are one and the only one of the following case will occur:
ea=b ea<b ea>bh

(02) ifa> bforsomea,b e R, thena+c>b+cVceER,

(03) ifa > b for some a,b € R, then ac > bc V¢ > 0,

(04) ifa> band b > c for some a,b,c € R, thena > c.

(Completeness) Every bounded above nonempty subset in R has a Supremum in R.

1.2 Properties of Real Numbers

(i) 0, 1 are unique, —a is unique for each a € R, 1 is unique for each a € R \ {0},
a

(ii) if a+ ¢ = b+ ¢ for some a, b,c € R, then a = b.
(iii) a-0=0Va eR,

(iv) —a=(-1)-aVa€eR,

v) —(—a)=aVa€eR,

i) (—a)(=b)=a-bVa,beR,

(vii) if a > b for some a,b € R, then —a < —b,
(viii) if a > b forsome a,b € R, thenca<cbVec <0,
(ix) a*> :=a-a>0VaeR\ {0}.

x) 1>0,
(xi) 2>1>%>0,

(xii) if a € R satisfiess0 <a<eVe>0,thena=0.



Proof
(i) Suppose 0’ € R also satisfies (A3), then by (A3) of 0 and 0/,we have 0 = 0+ 0" = 0.
The other cases are similar, so I left them as exercise.

(ii) Note that

A3
a(:)a+0

(ﬁ) a+[c+(—0)]

(A=2) (a+c)+ (—c¢)

assumption

= b+c)+(—c)

(A2)
="b+[c+ (—0)]

A4
Whrio
A3

@,

(A3) (A3) (D) ..
(iii) Notethat0O+a-0 = a-0 = a-(0+0) = a-0+a-0,by (ii), we have a- 0 = 0.

(iv) Note that

(43)
(-D-a = (-1)-a+0

D (1) atal + (—a)

(M3)
="[(-D)-a+1-a]l+(-a)

(D1)
= (-14+1-a+(-a

4
D04+ (-a)

@0+ (=a)
(A3)
=" —a

(v) By (A4), a+ (—a) = 0 = (—a) + a, since —(—a) is unique by (i), we have —(—a) = a by (A4).

(vi) Note that

(—a)(=b) ¥ [(=1) - all(=1) - b]
(M1),(M2)
KM 11 (= Da - b)

Y —=Dl@- b

Y@ b

(M3)
='a-b

(vii) Note that

a>b

(A44) (02) (AD
="a+(-a) > b+(—a) = —a+b

(43)

(02) (A2),(A4) (A3)
—b =0+ (=b) > (—a+b)+(=b) = -a

+0 = —a

(viii) Fixed any ¢ < 0, by (vii), —¢ > 0. Hence, —ca > —cb by (03), so ca < cb by (vii) and (v).

(ix) By (Ol), there are two cases:



'0(2)

(03)
(Case 1) Suppose a > 0, then a> > a 0.

’ (viii) (iii)
(Case 2) Suppose a < 0,thena” > a-0 = 0.

(x) Suppose it were not true that 1 > 0, By (O1) and (D2), we have 1 < 0.
By (M3), (vi), (ix), wehave l =11 = (=1)? > 0, which contradict with 1 < 0 by (O1).
Therefore, 1 > 0.

v (02),(x) (A3)
(xii) Note that2 :=1+1 > 140 = 1. Hence, 2 > 0 by (O4).

MH 1 D1 o3

)1
Sol =" =-2 > —.
© 2 2 2

Suppose it were not true that % > 0. By (O1), there are two cases:

A4
(Case 1) Suppose % =0, then 1 @ 2- % @ 0, which contradict with (D2).

A4 (03)
(Case 2) Suppose % < 0, then 1 @ 2. 1

(i)

< 2-0 = 0, which contradict with (x) and (O1).
Hence 1 >0
) 2 .

(xii) Suppose it were true that a # 0, by (O1) and assumption, a > 0,

(M3) (x1),(03)
1 >

(xi),(03)
Then,a = a-

. . . .. 1
a- > 0, which contradict with the assumption if e = a - 5

1
2
Hence, a = 0.
1.3 Bernoulli’s Inequality
If x> —1,then (1 + x)" > 1 + nx for any n € N.
Proof
Use Induction on n, it is obvious when n = 1.
Suppose the inequality holds for some n = k € N, i.e. (1 4+ x)* > 1 + kx. Then

1+ =1+ 01 + x)F
> 1+ x)(1 + kx) By Induction Hypothesis
=14 kx+x+ kx?
>1+k+ x since x% > 0,
the statement is true whenn = k + 1,
by principal of M.I, (1 + x)" > 1+ nxVn &€ N.

Remark

With similar skill, we have if x > —1, then (1 +x)" > 1 +nx+ %n(n —1)x? forany n € N with n > 2.



1.4 Bounded Above and Below, Sup and Inf, Max and Min
1.4.1 Definition
Let @ # S C R. Then
(i) S is said to be bounded above (below resp.) if Ju e R, s.t. s<uVse S(s>uVs e Sresp.).
In this case, u is called an upper (lower resp.) bound of S.
Also, S is said to be bounded if .S is both bounded above and below.
(ii) Suppose S bounded above, u € R is said to be a supremum of .S, or we denote u as Sup.S if

(a) u is an upper bound of S,
(b) if v is another upper bound of S, then v > u.

(iii) Suppose S bounded below, / € R is said to be an infimum of .S, or we denote / as Inf.S if

(a) [ is alower bound of S,
(b) if k is another lower bound of .S, then [ > k.

(iv) Suppose .S bounded above (below resp.), u € R is said to be maximum (minimum resp.) of .S,
or we denote u as Max.§' (Min.S resp.) if

@ ues,
b)) u>sVseS(>uVseSresp.).

remark
* MaxS, MinS may not exist even if .S is bounded. (see example below)

e SupsS, InfS, Max.S, MinsS is unique if they exist. (Why?)

1.4.2 Property (equivalent definition of Sup)
Let u be an upper bound of @ # S C R.
Then u =SupS ifandonly if Ve >0, 355 € S, s.t. 59 > u—¢.
Idea
A number is NOT an upper bound of S if it (strictly) less than u.
Proof
(&) Fixed any v be an upper bound of S. Suppose it were true that v < u.
Take € = u — v > 0, by assumption, 3 55 € S, s.t. 50 > u—€ = 0.
So v is NOT an upper bound, contradiction arise. Hence, v < u, so u =Sup.S.
(=) Fixed any € > 0, note thatu — € < u.
By def of Sup, u — € is NOT an upper bound of S.

Therefore, 3 s( € S, s.t. 59 > u—e.

1.4.3 Corollary

If M :=MaxsS exists in R, then M =SupS.
Proof

Note that M > M —eV e > 0and M € .S, the result follow by last prop.
Remark

Similarly, we have the following property:

Let  be a lower bound of @ # .5 C R.

Then ! =InfS if andonly if Ve > 0, 355 € 5, s.t. 59 <[+ €.



1.4.4 Example

Answer

Let S =(—o0,1) :={x € R : x < 1}, Show that S has no maximum and Sup.§ = 1.

Suppose S has the maximum M, then M € S,i.e. M < 1. Let M' = M + %(1 - M).
Sincel—M>0and%>0,wehaveM’ > M.
Sincel—M>0and%< l,wehave M <M +(1 - M) =1.

This means M’ € .S with M’ > M, which contradict with M is the maximum of .S.

So S has no maximum.

By def of S, we have 1 > s V s € S. Hence, S bounded above with an upper bound 1.
By Completeness Axiom of R, Sup.S exists in R. Fixed any € > 0, define sy = 1 — %

3

2<l.Sincee>0and%<1,sos0=1—§>1—£.

Sincee>0and%>0,sos0=1—

Therefore, s, € S with 55 > 1 — ¢, by prop 1.4.2, SupS = 1.

1.4.5 Property (Sup and subset)

Proof

Suppose @ # A C B C R, and A, B bounded above, then SupA <SupB.

Let u =SupB. Thenu > bV b € B.
In fact, since A C B,sou > aV a € A, i.e. uis an upper bound of A.

By definition of Sup, SupB = u >SupA.

Challenging Question

Please define Sup@ and Inf@ and explain why.

1.4.6 Property (Sup and +, -)

Proof

Let .S, T be an bounded above subset of R.

We definea+.S :={a+s|s€.S}and aS := {as|s € S} forany a € R.
Also, wedefine S+ T :={s+tlse S, teT}.

Then

(i) Sup(a+S) =a+SupSVaeR,

(ii) Sup(aS) =aSupSVa>0,
(iii) Inf(aS) = aSupS V a < 0. In particular, Inf(—.S) = —Sup.S,
(iv) S + T is bounded above with Sup (S +T) = SupS + SupT.

Let u =SupS. By def of Sup,u > sVs € S.
Hencea+u>asVse S,ie.atu>rVrea+sS.
Hence a + S is bounded above with an upper bound a + u.
Using equivalent definition of Sup,

Ve>0,3sg€ S, st sg>u—e.



Then,Ve >0, I3sg€S,st.a+syg>a+u—e.
Then, Ve >0, drp€a+S,st.rg>a+u—e.
Hence, Sup(a + §) = a + u = a+SupS.

(ii) Letu =SupS, a > 0. By def of Sup,u > sV s € S.
Hence au > asVse S,ie.au>rVreas.
Hence asS is bounded above with an upper bound au.
Using equivalent definition of Sup,

€ €
Ve>0,3sy €S, s.t. sg>u— —. Note that —>0.
a a

Then, Ve >0, Isg€.S,s.t. asy > au—e.
Then, Ve >0, Iryg €aS,s.t. ryp > au—e.
Hence, Sup(aS) = au = aSupS.

(iii) Letu =SupS. By defof Sup,u > sVs € S.
Hence —-u< —-sVse S,ie.—u<rVre-=S.
Hence —S is bounded below with a lower bound —u.
Using equivalent definition of Sup and Inf,
Ve>0,3s9g€S,st.sg>u—e.
Then,Ve >0, Isqg€.S,s.t. —sg <u+e.
Then,Ve >0, I3ryg € -S,st. rp<u+e.
Hence, Inf(—S) = —u = —SupS.

(iv) Let u =SupsS, v =SupT.
By defof Sup,u>sVse Sandv>tVreT.
Thenu+v>s+tVseS,teT,ie.u+tv>rvVre S+T.
Hence S + T is bounded above with an upper bound u + v.
Using equivalent definition of Sup,

€ £
Ve>0,3s9€S, tOET,s.t.s0>u—§andt0>v—§.

Then,Ve >0, I3sg €S, tg€T,s.t. sg+1y>u+v—e.
ThenVe>0,3ryeS+T,st.rg>u+v—¢.

Hence, Sup(S + T) = u + v =SupS+SupT.

1.4.7 Definition (Bounded, Sup, Inf of Real-Valued Function)
Given f : D — R be a real-valued function defined on D.
Then f is said to be bounded above (resp. below)
if the set { f(x) € R : x € D} is bounded above (resp. below).
An upper (resp. lower) bound of { f(x) € R : x € D}
is also called an upper (resp. lower) bound of f on D.
f is said to be bounded if f is both bounded above and below.
If f is bounded above, We define Supremum of f on D by Sug f(x)=Sup{f(x) eR : x € D}.
xe

If f is bounded below, We define Infimum of f on D by Inlf) fx)=Inf{f(x) R : x € D}.
xe



1.4.8 Property
Given f, g : D — R be a real-valued functions defined on D.
Note that f + g is a real-valued functions defined on D
such that (f + g)(x) = f(x) + g(x) V x € D. Then
() If f(x) < g(x)Vx e D, Then Sup f(x) < SuB g(x).
x€

x€D

(ii) Sup (f +g)(x) < Squ S(x) + Sup g(x).
xe

xeD xeD

Proof

(i) Let G = Sup g(x).
xeD

Then by def of Sup, G > g(x) > f(x) Vx € D.
Then G is an upper bound of f on D.
By def of Sup, Sup g(x) = G > Sup f(x).

x€eD xeD

(ii) Let F = Sup f(x), G = Sup g(x).

x€D xeD

Then by def of Sup, F > f(x)and G > g(x) V x € D.

Hence F+ G > f(x)+ g(x)=(f +g)(x)Vx € D.

Then F + G is an upper bound of f 4+ g on D.

By def of Sup, Sug f(x)+Sup g(x) =F+ G > Sup (f + g)(x).
xe

x€D x€eD

Remark
The following statements are false, think about the counter example.

@) If f(x) < g(x)V x € D, Then Sup f(x) < Inf g(x).
xeD x€D

(ii) Sup (f + g)(x) = Sup f(x) + Sup g(x).
x€D x€D

x€D

1.5 Archimedean Property
1.5.1 Main Statement
VxeR, 3n, eN,s.t. x <ny.
Equivalently, N is NOT bounded above.
Proof
Suppose it were true that N is bounded above.
By Completeness Axiom of R, u :=Sup N exists.
By equivalent definition of Sup, 3m e N,st. m>u—1,i.e. m+ 1> u.
Bydefof N\, m+1eN,butm+1 > u,

which is a contradiction. Hence, N is NOT bounded above.



1.5.2 Corollary
L.
Infe —:neN; =0.
n
Equivalently, Ve >0, 3n e N,s.t. 0 < 1 <e.
n

Remark

This Corollary is sometimes referred to as the Archimedean Property.

Proof

Note that 1 >0VneN,so {l i ne N} bounded below with a lower bound 0.
n n
By Completeness Axiom of R, w ::Inf{ l ‘ne N} exist in R.
n

By def of Inf, w > 0.

VY € > 0, note that 1 > 0, by Archimedean Property,
€
1 . 1
dneN,st.0<-<nie 0<~-<e.
I3 n

Bydefof Inf,0 < w < 1 < ¢, thisis true Ve > 0.
n

—_

By Prop 1.2(xii), Inf{— neE N} =w=0.

S

1.5.3 Example

Let S = {21 :n €N }. Find Sup S, Inf S (If exist).

——

Answer

n+l§n+n:ltrueVneN,son+1 il . l
on+1 2n+l on 2on+l on 2

Note that
1 1

Hence Max S = 3 and so Sup S = 5

Note that 2n_n > 0V n e N. Then S is bounded below with lower bound 0.

By Completeness Axiom of R, w = Inf .S exists in R, and w > 0.

Fixed any € > 0, by Archimedean Property, 3 n’ € N, s.t. l/ < E, i.e. % < €. Then
n n

2
! ! Bernoulli’ s U
o<w< " n - 2 -2
20 (A1) nequatity 1 4p! 4 0/ = 1) 242400 =1) A H1+2
2
<—=<e.
n/

By Prop 1.2(xii), Inf S = w = 0.

1.6 Interval
1.6.1 Characterization of Interval
Let@ # S CR.

S is an interval if and only if V x, y € .S with x < y, we have [x,y] C S.



1.6.2 Property (Union of Interval)

Let {1, }:":1 be sequence of interval.

o0
Ifﬂ[n :={x € R : xe&l,VneN}isnon-empty,
n=1

(s
then U I, :={x € R : xel, for some n € N} is an interval.
n=1

Proof

(&) (&)
Letz € ﬂ 1,. Pickany x,y € U 1, with x <y, we want to show [x, y] C U I,

n=1 n=1 n=1

By def of union, 3 n,, ny, s.t. x € I,,)C and y € I,,y.
By def of intersection, z € I, and z € I,,y.

(Case 1) Suppose x < z < y.

By characterization of interval, [x, z] C Inx and [z,y] C Iny.

Hence, [x, y] = [x,z] U [z,y] C U I,

n=1
(Case 2) Suppose z < x < y.

By characterization of interval, [z, y] C Iny.

Hence, [x,y] C [z,y] C I, C U
n=1
(Case 3) Suppose x < y < z.
it is similarly with Case 2.

(o) (o)

In any case, [x, y] C U 1,,. By characterization of interval, U 1, is an interval.

n=1 n=1

1.6.3 Nested Interval Theorem
Let I, :=[a,, b,] be nested sequence (i.e. I, C I,V n € N) of CLOSED, BOUNDED intervals.

(s}
Thendé€R,st.E€ 1, VneN. Thatis,ﬂ[n;éz.

n=1

Furthermore, if the length of the intervals b, — a,, satisfy Inf {b, —a, : n € N} =0,

o0 o0
Then ﬂ I, is a singleton. That is, 31 £ € R, s.t. ﬂ I, ={&}.

n=1 n=1

1.6.4 Counter Example If Dropping Closed or Bounded Assumption

(Example 1) Let I, = (O,l> VneN. Notethat I, Cc I,VneN.
n

Hence, I, is nested sequence of (bounded but not closed) intervals.

Suppose it were true that ﬂ I, #@. Leté e m I,.
n=1 n=1
By def of 1,, £ > 0. But by Archimedean Property, 3 N € N, s.t. 0 < % <&

(o)
It is a contradiction since & & I . Therefore, ﬂ 1,=0.

n=1



(Example 2) Let I, = [n,+00) Vn e N. Note that I, C I, VneN.
Hence, I, is nested sequence of (closed but not bounded) intervals.
oo (s
Suppose it were true that ﬂ 1, # . Leté € m 1,.
n=1 n=1

Note that £ € R. But by Archimedean Property, 3 N € N, s.t. § < N.

(o]
It is a contradiction since & & I . Therefore, ﬂ 1, =0.

n=1

10



2 Sequences

2.1 Definition and Basic Property

2.1.1 Definition (Sequence)

A sequence in R is a functiona : N — R.

We usually write a(n) as a,,. Also, we write the sequence a as

{an}’ (an)’ {an};.lozl or (an):ozl

2.1.2 Definition (Limit of Sequence)

Remark

()

(i)

(iii)

Let {x,} be a sequence in R. We say x,, converge to L € R if
Ve>0,3INeN,st.VneNwithn> N, wehave|x, — L| <e.
In this case, we say L is a limit of x,, and x,, is a convergent sequence.

If x,, has no limit in R, then we say x,, is a divergent sequence.

When the question need you to prove L is the limit of sequence,
you CANNOT determine the value of €, you only know ¢ is arbitrary (small) positive number,
and then find a (large) N (depends on ¢) satisfy the result.

When the question give you the result that L = lim x,,,
n

you can take any positive number of ¢,

could be 1, x? (for some x # 0), or just write € > 0, depends on what is the conclusion.
then the assumption will give you a (large) N (you don’t know what this N is),
such that |xn - L| < eV n> N, and then using this fact to prove the result.

x, is divergentif V L €R, 3¢y > 0,s.t. VN €N, 3n' > N, s.t. |x, — L| > .

2.1.3 Property (Uniqueness of Limit)

Proof

Limit of a convergent sequence in R is unique.

Therefore, if L € R is the limit of {x,}, we will write in this notation:

limx,=L OR x,— L asn— oo.
n

Let L, L’ € R be limits of a convergent sequence x,,. Pick any &€ > 0,
AN eN,st.¥Yn>N,wehave|x, - L| < g,

AN eN,st.Vn> N’ wehave|x, — L'| < %
Take M = Max {N,N'},
€

2
This true for any € > 0, s0|L — L'| = 0. Hence, L = L’.

Then|L — L'| <|L — x| +]xp — L'| <§+ = ¢,

11



2.1.4 Example
Determine the following sequences are convergent / divergent.

If convergent, guess the limit and prove it by € — N definition. If divergent, give a reason.

1

(a) an = ;s
(b) a,=(-1)",
_Sn+2
©) a, = n+1°
(d) a,=r"giventhat 0 < r < 1.

Answer

(a) Guess a,, converge to 0.

Fixedany € > 0,by AP, 3 N €N, s.t. 0 < % < €.

Note that Vn > N, wehave 0 < = < % <e,

S =

1
that means V n > N, we have|a, — 0| = = < &.
n
Hence, {a,} convergent with lima, = 0.
n
(b) Guess a,, divergent.

FixedanyLER,takee():%Max{|L—1|, |L+1| }>0,ﬁxedanyNeN,

(Case 1) Suppose &9 = 3|L = 1] > 0.

Take n' = 2N > N, then|ay — L| =|1 = L| =|L — 1] > &.
(Case 2) Suppose ¢ = 2L +1] > 0.

Take n’ =2N + 1> N, then|a, — L| =|-1 - L| =|L + 1| > &,
In any case, we can find ' > N s.t. |a

L| > &, hence, {a,} divergent.

n

(c) Guess a, converge to 5.

Fixed any e > 0,by AP, 3N €N, s.t. 0 < % < %

Note that V n > N, we have 0 <

S |w

<i<£,
N

that means V n > N, we have|a, — 5| =

Hence, {a,} convergent with lima, = 5.
n
(d) Guess a, converge to 0. [We want to use Bernoulli’s Inequality.]

Letq=l—1>0,thenr=L.
r qg+1

Fixed any € > 0,by AP, I N e N,st. 0 < % < ge.

Note that V n > N, we have 0 < i < L <eg,
ng N

q

1 Bernoulli's 1 1
that means V n > N, we have|a, — 0| = r" = < < —<e.
(g+ D" Inequality 1+ nq nq

Hence, {a,} convergent with lima, = 0.
n

12



2.1.5 Definition (Bounded)

A sequence x,, is said to be bounded if 3 M > 0, s.t.|x,| < M VneN.

2.1.6 Property

Convergent sequence must be bounded.

Proof
Let {x, } be convergent sequence with limit x € R.
Takee =1, 3N €N, s.t.|x, —x| <e=1Vn > N.
ie.x—1<x,<x+1Vn>N.
ie.|x,| <Max {|x—1|, |x+ 1|} Vn > N. (Remark: it is necessary since x + 1 can be negative.)
Hence, |x,| < Max {|x;|.|xa|,...]xy_i|.]Jx = 1].]x+ 1|} VrneEN
(Remark: This Max exist in R since the set is finite.)
Hence, {x,} is bounded.
Remark

The converse is not true, the counter example is 2.1.4(b),

the sequence is bounded but not convergent.

2.1.7 Property
Fixed some m € N.

{x,}72, is a convergent sequence if and only if {x,,,}° , is also a convergent sequence.

n+m

In this case, hzn X, = ll}gn Xpm-

Idea
The limit/convergence of a sequence describe the mass behaviour of the terms for all » large,
it will NOT be affected by finitely many terms.
Proof
(=) Suppose x,, converge to x € R.
Then fixed any € >0, 3N € N, s.t. Vn > N, we have|x, — x| <e.

In particular, we have|x,, — x| <eVn+m> N.

n+m

That is we have|x,,,, — x| <&V n> N. (sincem > 1.)

n+m

Hence, we have x,_,, converge to x.

n+m

(<) Suppose x,.,,, converge to x € R.

n+m

Then fixed any € >0, 3N €N, s.t. Vn > N, we have|x, ., — x| <e.

n+m

Let N' = N + m € N, then we have|x, —x| <eVn> N'.

Hence, we have x,, converge to x.

13



2.1.8 Property

Proof

Let {x, } be a convergent sequence with lim x,, = x.

Ifa<x< pforsomea,f €R,showthat I N eNst.a<x,<fVn>N.

Take £y = Min{f — x,x —a} > 0, by x,, converge to x,
EINEN,s.t.|xn—x| <gVnx=N,
thatisx — gy < x, <x+¢gVn>N.
Note that e < f — x and € < x — a by definition of Min.

Hence,a =x—(x—a)<x—gy<x,<x+e <x+P-x)=pfVn>N.

2.2 Monotone Convergent Theorem
2.2.1 Definition

A sequence {xn} is said to be increasing if x, < x,,; VneN.
A sequence {xn} is said to be decreasing if x, > x,,.; Vn € N.

A sequence is said to be monotone if it is increasing or decreasing.

2.2.2 Main Statement of Theorem

Remark

An increasing sequence {xn} is convergent if and only if it is bounded above. In this case,

limx, = Sup {x, : n €N}

An decreasing sequence {xn} is convergent if and only if it is bounded below. In this case,

li}gnxn = Inf {xn ne N}

The theorem is still true if the tail of the sequence is monotone.

2.2.3 Example

Answer

Letx; =8,x,,1 = %xn +2VneN. Show {xn} convergent and find the limit.

Use induction on » to show the sequence is decreasing and bounded below by 0.
Note 0 < x, =6 < 8 = x;. Now assume 0 < x; < x;_; for some k € N.
Thenxk+1 = %xk+25 %xk_l +2:xk andxk+1 = %Xk+2>0+2 >O

Then {x,,} is a bounded below decreasing sequence and
hence convergent by Monotone Convergent Theorem.

Let x = lim x,,, then we have
n

. 1.
hznan = Ehrrlnxn +2

x==x+2

1
2
x =4

14



2.3 Bolzano-Weierstrass Theorem
2.3.1 Definition

Let {xn}:il be a sequence in R, and

{nk}zozl be a STRICTLY increasing sequence in N. (i.e ny <n, < ...and n, € NV k € N)

o
The sequence {xnk } is called a subsequence of {xn}.

2.3.2 Example

Let x, = I , n, = k?, the subsequence can be expression by this table:
" oan+3 0k
I 2 3| &
ny 1 4 k>

2.3.3 Property
Let {xnk } be subsquence of {x, } in R. Then
() n,>kVkeN.
(ii) if {xn} converge, then {xnk } converge to same limit.
Proof
(i) Use Induction on k, it is true when k = 1 since Min N = 1.
Assume n; > [ for some / € N, thenn; | > n, > 1,s0n, > 1+ 1. (Why?)

Hence, n, > kV k e N.

(ii) Suppose limx, = x € R. Fixed any &€ > 0, we have some N € N, s.t.|x, —x| <eVn> N.
n

In particular, by (i), if k > N, n;, > N, so

x, —x|<eVk>N.Thatis, limx, = x.
nk k nk

2.3.4 Corollary
If the sequence {xn}
(i) has a divergent subsequence, OR

(ii) has two convergent subsequence {xn’_ }, and {xnj } with lilm Xy, F lijrn Xns
then {x, } is divergent.

2.3.5 Claim

Every sequence in R has a monotone subsequence.

Proof

Let {x,,} be a sequence in R. We define x,, is a "peak" if x,, > x, Vm < n.

(Case 1) Suppose {x,, } has infinitely many "peaks".

Then list the "peaks” x,, , X, ..., X

s Xpmy» e Withmy <my, < o<my <L

my

By definition of "peak”, we have x,, > x,, 2..2x, 2.

hence {xm } is a decreasing subsequence.
k
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(Case 2) Suppose {xn} has finitely many "peaks".
Then list ALL "peaks” x,,, , X, ..o X, Withmy <mp < ... <my.

That means x,, is NOT a "peak" if n > N.

Take n; = N + 1> N, since x,, isnota "peak”, then I ny > ny,s.t. x, > x, .

. : " "
Since ny > ny > N, then x, is nota "peak”, then I n3 > ny > ny, s.t. x,. > x,, > x, .

Repeat the process, we have N < n; <ny <..<ng < ..
such that Xp, <Xy <o <X, <

that means {xnk } is a (strictly) incresing subsequence.

2.3.6 Bolzano-Weierstrass Theorem

Every bounded sequence has convergent subsequence.
Proof (from Monotone Convergent Theorem)

Let {xn} be bounded sequence. By the claim, there are a monotone subsequence {xnk }
Since {xn} bounded, so {xnk } bounded. (Why?)

By Monotone Convergent Theorem, {xnk } converge.

2.4 Cauchy Convergent Theorem
2.4.1 Definition

A sequence in R is said to be Cauchy if

Ve>0,INeN,st.Vnm>N, wehave |x, —x,| <e.

2.4.2 Main Statement of Theorem

A sequence in R is convergent if and only if it is Cauchy.

2.5 Properly Divergent and Series
2.5.1 Definition

(i) A sequence {xn} in R is said to be tends to 4+o0, denoted as lim x,, = +oo0,
n
ifvM>0,3NeN,st. Vn> N, wehave x, > M.

(ii) A sequence {x,} in R is said to be tends to —co, denoted as lim x, = —co,
n

ifYM>0,3NeN,st. Vn> N, wehave x, < -M.

(iii) In this two cases, the sequence is called properly divergent.

2.5.2 Example involving summation

Let {x, } be a sequence in R. Define {.S, } by

n
1 1
S, = - (xl +x2+...+x,,) = foi’
that is the mean of first n terms.

(a) Iflimx, = x € R, show that lim S, = x.
n n

(b) If limx, = 400, what can you say about lim .S, ? Provide the reason.
n n

16



(c) Is that true that { xn} is convergent given that {Sn} is convergent?
Answer
(a) Fixed any € > 0,
by limx, =x. 3N €N, st |x, —x| < S ¥n > Ny.
n
N, |
Now K := ) |x; — x|+ 1is a fixed constant, by AP, I N, €N, st. — < £
~ N, 2K

Take N = Max {NI,NZ}. If n > N, we have

1 1
|Sn—x|—;;xi—nx—;121(x,~—x)

ln

5;2|xi—x|
i=1
1N1 1 n

= - X;—x|+ = X;—X
"Zf|' |ni=§+l|z |
1 1 v €

< —K+- =
N> ni=N1+12

<4 Nie
2 n 2

<e.

Hence, we have lim .S, = x.
n
(b) Guess lim .S, = +o0. Fixed any M > 0,
by limx, = +00, 3 N; €N, s.t. x, >3M Vn > N;.
n

Ny
Now K := Z|x,—| is a fixed constant, by A.P., 3 N, € N, s.t. % < N,.
i=1
] 1 K
Note x; > —|x;| Vi=1,2,.., N, —1,so;2xi > - ;|x,.| 2-qrZ-MVnz N,

i=

Take N = Max {3N1,N2}. If n > N, we have

n N-
1
2%
i=1 j

S =

Il
S|
™M
Ry
+
S =
™M
=

v
|
<
+

[\ 1]
| |
= =
N +
T
‘ |
~ ==z
— —
2 o
= =

Hence, we have lim S, = +oo0.
n

(¢) NO. Consider the counter example x,, = (—l)n,

. — Lifnis odd
Note {xn} is NOT a convergent sequence but S, = ¢ 7 . converge to 0.
0 ,if n is even
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Limit Superior and Limit Inferior
2.5.3 Definition
Let {xn} be a BOUNDED sequence in R. We define

« limsup x, = limsup x,,
n " k>n

e liminf x, = liminf x,.
n n >n

2.5.4 Equivalent Definition

Let {xn} be a bounded sequence in R. Then lim sup x,, = x is equivalent to
n

(i) x =limsupx, = limsup x; = inf sup x;, OR
n n k>n neN k>p

(ii) Ve > 0, x + £ < x,, for ONLY finitely many n € N
but x — € < x,, for INFINTELY many n € N.

2.5.5 Property

Let {xn} be a bounded sequence in R. Then

{x,} is convergent if and only if lim sup x,, = lim inf x,,.
n n

In this case, we have lim sup x,, = lim x,, = lim inf x,,.
n n n

Proof

(=) Suppose limx, = x € R. Fixedany e >0, 3N € N, s.t. |x, — x| < %‘v’nzN.
n
Thatis,x—%<xn<x+%VnZN.Therefore,foranynZN,Wehave

3 3 £ _ . 3
x—=—<supx, <x+=- and x-=-<infx, <x+ .
2 gen 2 2~ kzn

Hence, we have [sup x; — x <=-<eVnx>N.

k>n

€
< =<eand
2

inf x; —x
k>n

| M

Hence, limsup x,, = x = liminf x,,.
n n

(<) Suppose limsup x,, = liminf x, = x € R. Fixed any € > 0,
n n

I N; eN,s.t.|supx; — x| < € Vn > Ny, in particular, supx; < x+eVn> Nj.
k>n k>n

AN, eN,sit. Ii(nf X, — x| < € Vn > N,, in particular, Ii{nf Xy >x—eVn>N,.
>n >n

Hence, for any n > N := Max {N,, N, }, we have

x—e<inf x, <x, <supx, <x+e.
k>N k>N

That is, we have|x, — x| <eVn> N.

Therefore, {x, } is convergent with lim x,, = x.
n

18



2.5.6 Property
Let {x,},{y,} be bounded sequences in R. Then

limsup (x, + y,) < limsup x, + limsup y,.
n n n

Proof

Note forany n € N, x,, + y,, <supx;, +supy, Vm > n,
k>n k>n

Hence sup (x; + ;) < supx; + sup y; V n € N. Therefore,
k>n k>n k>n

lim sup (xk + yk) <lim{ supx; +supy, | =limsupx, + limsup y,.
n mo\ k>n k>n n n

Remark

The inequality may be occur. Think about x, = (=1)" and y, = (=D,
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3 Limit of Function

3.1 Basic Property
3.1.1 Definition (Neighborhood)

Letc € R, 6 > 0, we denote the 6—neighborhood of ¢ as

Vs i=(-6c+d)={xeR:|x—c|<5}.

3.1.2 Definition (Cluster Point)

Let A C R. A point ¢ € R is said to be a cluster point w.r.t. A if

Ve>0,Ixe Awithx #c, sit. [x—¢c| <e(Orx e V.(c)\ {c}).

Remark
A cluster point ¢ € R w.r.t. A may NOT be in A. (Consider A =R\ {0}, ¢ =0)

A point a € A may NOT be a cluster point w.r.t A. (Consider A = {0}, a =0)

3.1.3 Definition (Limit of Function)
Let@# ACR, f : A— Rbe afunction, ¢ € R be a cluster point w.r.t. A.

L € R is said to be a limit of f at ¢ if

Ve>0,36>0, st Vxe(c—6,c+06) withx # ¢, wehave |f(x) - L| <e.

By some property, we know the limit of f at ¢ is unique if it exists,

hence we will denote the above case as

lim f(x)=L or f(x)—> Lasx—c
X—C

3.1.4 Definition

Sometime, we will discuss different types of limit of function.

For example, we will discuss f tends to infinity or as x tends to infinity or the one-sided limit.

It will be difficult to remember all the cases. But the patterns of them are similar.

lim f(x) = L if V Statement A, 3 Statement B, s.t. V x € R with Statement C, we have Statement D.
X—=C

’ Cases H Notation H Statement A \ Statement B \ Statement C \ Statement D
Two-sided limit lim f(x) =?? - 6>0 O<|x—c|<$é -
RHS one-sided limit ):lcijr;;+ f(x)="? - 6>0 O<x—-c<$é6 -
LHS one-sided limit lim f(x)=7? - 6>0 O0<c—x<$6 -
limit as x — +o0 :Eéloo f(x) =" - N >0 x> N -
limit as x - —o0 lim f(x)=?? - N >0 x<—-N -
Timit tends to L € R Xxl_i;r;l:of(x) =5 £>0 - - [ —L[<e
limit tends to +oco xh_)nql(, f(x) =4+ M >0 - - fx)y>M
limit tends to —oco xll_)rgq f(x)=—- M >0 - - fxX)<-M

Example

lirg f(x)=4ocomeansV M >0,36>0,s.t. Vx € Rwith0 < x —2 < §, we have f(x) > M.
x—2"
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3.1.5 Example

Guess the limit and proof by definition.

N li x2 A 1
(l) 1m x—+2 ( ns: )

X——

3
Gi) lim >3 (Ans: 11)
x—=2 X —
(iii) lim (Ans: —o0)
x—1— x —
(iv) lim (Ans: l)
x——00 2x2 — | 2

Answer

1

@ Fixedanye>0,take5:Min{E,g} >0, if x € R with 0 <|x + 1| < 6, we have

-1-6<x<-1+46

3 1
—§<x<—§<0

That is, 0 < 1 <x+2<2andhencel < L < 2, and also, |x| < §<2.
2 2 x+2 2

If x € R with 0 <|x + 1| < &, we have

2 2
x x“—x-2 x—=2
1= a1 <25 2) <85 <e.
x+2 vz | |x+2‘_ (xI+2) <85 <e
2
Hence, lim =
x—-1x+2
(ii) Fixed any & > 0, take & = Min {%%} > 0, if x € R with 0 < |x — 2| < 6, we have

2—-6<x<2+4+6

O<§<x<§
2 2’

<2, and also, |x|> +2|x| +7 < §+5+7<20.

. 1 3 2 1
That - -1<= h =
a1s,0<2<x <2and ence3<x_1

If x € R with 0 <|x — 2| < &, we have

3 3_ 2 _
e DY [N il 85 e . R V] e s el §25(|x|2+2|x|+7>5405<6.
x—1 x—1 x—1
3
Hence, lim X +3 =11.
x—-—-1 x—1

>0,if xeRwith0 < 1—x <6, we have

. 1
iii) Fixed M >0, take 6 =
(iii) Fixed any ake Ml

1 M
M+1 M+1

-x<-=1-

M
M+1
Mx+x>M Since M +1>0

x>-M(x-1)

<-M Sincex—1<0

x>

X

x—1
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(iv)

Fixed any € > 0, by A.P.,AM € N, s.t. ﬁ < e, WL.O.G, assume M > 2.

If x < =M, then x2 > M? > M, and so

2
2 1] | S B R
2x2 -1 2 22x2 -1~ 4M2-2" M
x2 1

Hence, lim = —.
x=-c02x2 -1 2

3.2 Sequential Criterion

3.2.1 Sequential Criterion for Limit of Function

Let f : A > R, c € Ris acluster point of A. Let L € R. Then

lim f(x) = L if and only if
X—C

lim f(a,) = L for any sequence {a,} witha, € A\ {c} Vn e Nandlima, = c.
n n

3.2.2 Sequential / Cauchy Criterion for Limit of Function

Proof

(i) => (i)

(>iii) = (ii)

(i) = (@)

Let f : A > R, c € Risacluster point of A. Let L € R.
The following statements are equivalent:

@) )l}_}ng f(x) exists in R.

(ii) (Sequential Criterion)

lim f(x,,) exists for any sequence {x,} withx, € A\ {c} Vn e Nandlimx, = c.
n n

(the limits are NOT necessarily same for each sequence, but in fact they are same.)
(iii) (Cauchy Criterion)

Ve>0,36>0,stVx,x' € AwithO <|x—c|<dand 0 <|x' —¢| <4,

we have | f(x) — f(x)| < €.

Suppose )1(1_1)12 f(x) =L € R. Fixed any € > 0,
we can find some & > 0, such that| f(w) — L| < g Ywe Awith0 <|w—c| < 6.
If x,x’ € Awith0 <|x —¢| <5 and 0 <|x" —¢| < &, we have
F) = 7G| <lf0 - L+ - L < S+ 5 =
Suppose f satisfy (iii).
Pick arbitrary sequence {x,} withx, € A\ {c} Vn € Nand lirlln X, =c.
Fixed any € > 0, by assumption, we can find some 6 > 0, s.t.
Vx,x' € Awith0 <|x —¢| <6 and 0 <|x" —¢| < §, we have|f(x) — f(X)| <&. (¥)
For this 6 > 0, by convergence and assumption of {x,},3 N € N,s.t. 0 < |x,, - c| <6Vn>N.
By (*), we have|f(x,) — f(x,)| <€Vnm>N.
Hence, { f(x,)} is Cauchy and so Convergent by Cauchy Convergent Theorem for Sequence.

Suppose f satisfy (ii).

Claim: lim f(x,) is SAME whenever {x,} is a sequence with x,, € A\ {¢} Vn € Nandlimx, = c.
—_— n
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Proof Let {x,},{y,} be two sequences satisfying
Xp Vo €A\ {c}VneNandlimx, =c=1limy,.
n n

Suppose lim f(x,) = L and lim f(y,) = L' forsome L, L' € R.
n n

Now, we construct a new sequence {z,} by z,, = x, and z,,_; = y, forany n € N.

Then z, € A\ {c} Vn € Nand lim z, = 0. (I left this statement as exercise.)
n

Hence, lim,, f(z,) = L for some L" € R.

Note that { f(x,)}, { f(y,)} are subsequences of { f(z,)} and so we musthave L = L" = L'.

By the claim, 3 L € R, s.t. for any sequence {x,} withx, € A\ {c¢} Vn € Nandlimx, =c,
n
we have lim f(x,) = L. (*%)
n

Suppose it were true that lim f(x) does not exist. In particular, lim f(x) # L.
X—=C X—=C

ey >0,st.¥YneN,Ja, € Awith0 <|a, —c| < 1,s.t.|f(a,,)—L| > .
n
Note {a,} is a sequence with a, € A\ {c} and lima, = ¢ BUT lim f(aq,) # L.
n n

Contradiction with (**). Hence, lim f(x) = L € R.
X—=C
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4 Continuous Function

4.1 Basic Property
4.1.1 Definition
Let f : A —» R, A non-empty subset of R, let ¢ € A.
f is said to be continuous at ¢ if
Ve>0,36>0,s.t Vx € Awith|x —¢| <8, we have|f(x) — f(¢c)| <.
Also, f is said to be continuous on A if f is continuous at every ¢ € A.
Remark
(i) ¢ must need to be in A, otherwise, f(c) is NOT well-defined.
(ii) It is NOT necessary for c to be a cluster point of A.
(iii) If c is not a cluster point of A (we called it isolated point), then f is automatically continuous at c.

(iv) If c is a cluster point of A, then f is continuous at c is equivalent to

lim £ () = ().

XEA

but in this course, please do NOT use this equivalent definition.

4.1.2 Property

If f,g : A — R are continuous at ¢ € A, then fg is also continuous at c.
Proof
Suppose f,g : A — R are continuous at ¢ € A.
Claim: g is locally bounded at 0. i.e. 3 M > 0,6, > 0, s.t. |g(x)| < M V x € A with|x —¢| < §;.

Proof Take g, = 1, since g is continuous at ¢, 3 6; > 0, s.t.
|g(x) —g(e)] <gg =1V x € Awith|x —c| < §.
That is, f(x) < Max {|g(c) + 1].|g(c) = 1|} =: MV x € Awith|x —¢| <§,.

Fixed any € > 0, by f, g continuous at ¢, we can find

8, > 0,s.t. Vx € A with|x — ¢| < &5, we have|f(x) = f(c)| < ﬁ and
. €
63 > 0, s.t. Vx € A with|x — ¢| < 85, we have |g(x) — g(¢)| < —.
| | 2|f ()| +1
Take 6 = Min {6, 6,,85} > 0, if x € A with|x — ¢| < &, we have

|f()g(x) = f()g(e)] <|f(x) = f(e)||gx)| +|f(e)]|g(x) — g(o)]
& £

< W M+|f(C)| : 2|f(C)| 1
+

IA
STNCIN S

=E.

| M

Hence, fg is also continuous at c.

24



4.1.3 Property
Let A, B C R.

If f: B—>R,g: A— Bare continuous functions, then fog is also continuous on A.
Proof

Fixed any € > 0, Fixed any ¢ € A, by continuity of f,

we can find 77 > 0, s.t. V y € B with|y — g(c)| < 7, we have|f(y) —f (g(c))‘ <e (%)

For this # > 0, by continuity of g,

we can find 6 > 0,s.t. V x € A with|x — ¢| < 8, we have|g(x) — g(c)| < 7.

Combine with (*), we know V x € A with|x — ¢| < 8, we have|f (gx) = f (g(c))' <e.

Hence, fog is also continuous on A.

Question

Let @ # A CR,Let f : R - R be the distance function from A. That is,
fG) :=Inf{lx—a| :a€ A}.

(@) Show f(x) <|x —y|+ f(y) forany x,y € R.

(b) Show f is continuous on R.

(c) Letc & A. Show c is a cluster point of A if and only if f(c) = 0.
(d) Can we drop the assumption ¢ € A in part (c)?

Answer
(a) Pick any x,y € R, a € A, by triangle inequality, |x — a| <|x — y| +|y — a|.

By taking infimum over a € A on both sides, since infimum preserves order, we have
JX) Llx =yl + 7).

(b) Fixedany e > 0, x € R, take 6 = ¢ > 0. If y € R with|x — y| < §, by (a), we have
fG) = f( <lx—yland f(») = f(x) <|x = yl,and so|f(x) = f(Y)| <|x -yl <6 =¢.
Hence, f is continuous at every point x € R. Hence, f is continuous on R.

(¢)(=>) Suppose ¢ ¢ A is a cluster point of A. Fixed any € > 0,
We can find some a € A, such that 0 <|c — a| < &.
By definition of Inf, f(c) = 0.

(<) Suppose f(c) =0, c ¢ A. Fixed any € > 0, by definition of f (i.e. by definition of Inf),
we can find some a € A, such that|c — a| < €. Note that a # ¢ sincea € Aand ¢ € A,
thatis,Ve > 0,3a € A\ {c}, such that|c — a] < &.

Hence, c is a cluster point of A.

(d) NO. Consider the counter example A = {0},

then f(0) = 0 but 0 is NOT a cluster point of A.
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4.2 Uniform Continuity
4.2.1 Definition
Let@# ACRand f : A— R be a function.

f is said to be Uniformly Continuous on A if
Ve>0,36>0, st Vx,ye Awith |x —y| <6, wehave |f(x) - f(»)| <e.
Remark

(i) The uniform continuity of f is defined on some set but not a point.

(i) If f is uniformly continuous on A, then f is continuous on A.

4.2.2 Example
(@) f(x) = x is uniformly continuous on R.
(b) f(x)= x2 is uniformly continuous on [a, b] for any a,b € R with a < b.

However, f(x) = x2is NOT uniformly continuous on R but it is continuous on R.

© f(x)= 1 is uniformly continuous on [a, b] for any a,b € R with 0 < a < b.
x

However, f(x) = 1 is NOT uniformly continuous on (0, b]
X
but it is continuous on (0, b] for any b > 0.
4.2.3 Uniform Continuity Theorem

Let f : [a, b] — R be a function for some a, b € R with a < b.

Then f is uniformly continuous on [a, b] if and only if f is continuous on [a, b].

4.2.4 Question

Let f : R - R be a continuous function on R.

(a) If XETOO f(x)=L eRand xl_i)r_nm f(x) = L' € R, then f is uniformly continuous on R.
(b) If f is periodic with period p > 0, that is
f(x+p) = f(x) forany x € R,
then f is uniformly continuous on R.
Answer
(a) Fixed any € > 0, by xl—i>r-il-loo f(x)=L €Rand xgrpm f) =L eR,
IM>0,st|f(x) - L| < ZVxZM (*) and
IM' <0, st|f(x)-L'| < % Vx <M (%)

Note that f is continuous on [M’, M1,

and hence f is uniformly continuous on [M’, M ] by Uniform Continuity Theorem.
Therefore, 36’ > 0,s.t. Vx,y € [M’, M] with|x — y| < &, we have|f(x) — f(y)| < % (FF),
Let$ :=Min{é’,M — M’} > 0.

Now, pick any x, y € R with|x — y| < 6, WLOG, assume x < y,
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There are five cases:
(Case 1) Suppose x,y € [M’, M], then by (***),|f(x) — f(y)| < % <e.

(Case 2) Suppose x,y < M’, then by (**), we have
e € €

F@ = 0| <lf@ - L]+ f ) - D] < S+ E=E <.
(Case 3) Suppose x,y > M, then by (*), we have
|fG) = fO| <|fx) = LI +|f» - L| < §+ Z = % <e.

(Case 4) Suppose x < M’ <y, then y < M, then using (***) and case 2, we have

700 = FO)| |G = FMD]| +]F (M) = F 0] < 5+ 5

(Case 5) Suppose x < M < y, then x > M’, then using (***) and case 3, we have

|[f(0) = fD)] L]F ) = F(M)| +|f(M) = f(y)] < % +§

=E.

= E&.

In any cases, we must have|f(x) — f(y)| < &.
Hence, f is uniformly continuous on R.
(b) Fixed any € > 0, note that f is continuous on [0, p],
hence f is uniformly continuous on [0, p] by Uniform Continuity Theorem.

Hence, 36’ > 0,s.t. V x,y € [0, p] with|x — y| < &', we have|f(x) — f(»)| < % (*)

Let 6 :=Min{é’, p} > 0.

Pick any x,y € R with|x — y| < 6, WLOG, assume x < y, by division algorithm,
AnmeZ,s,t €[0,p),s.t. x=np+sandy=mp +1.

Note thatm > nand —p <t —s < p.

Notethatp > 6 >|x—y|l=y—x=m—-np+ (It —s)>(m—n—1)p.
Since p > 0, we have 0 < m — n < 2, since m,n € Z, m — n is either 0 or 1.

(Case 1) Suppose m —n =0, thatism=n,so|s—t| =|x—y| <6 <&,
then by f is p—periodic and (¥), we have
|fC) = fW)| =|fnp+s5) = fmp+5)| =|f(s) = f(0)] < % <e.
(Case 2) Supposem —n =1,
then|p—s|=p—s<t+p—-s=lt+p—s|=|x—y <6<,
and|[t —0|=t<t+p-—s=lt+p—s|=lx—y[ <5<,
then by f is p—periodic and (¥), we have

|f(x) = fD| L[ f(p+ )+ f(np+ p)| +|f(np + p) + f(np + p+1)|
=|f(s) = f()| +|f(0) = f(0)

& &
< 4+Z==¢
t7=¢

In any cases, |f(x) — f(y)| < &.

Hence, f is uniformly continuous on R.

4.3 Maximum Minimum Value Theorem

4.3.1 Main Statement
Let f : [a, b] = R be a continuous function on [a, b] for some a,b € R with a < b.
Then f attains an global maximum AND global minimum on [a, b].

That is, 3 x*, x,. € [a, b], s.t. f(x,) < f(x) < f(x*) Vx € [a,b].
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4.3.2 Question

Let f : R - R be a continuous function on R.

@ If lim f()= lim f(x)=LER,

then f attains an global maximum OR global minimum on R.

(b) With same assumption of (a),

could f attains both global maximum AND global minimum on R?

(c) Could the assumption of (a) be replaced by liril f(x)=LeR, lim f(x)=L' e R?
X—>+00 X—>—00

answer

Letg : R - R defined by g(x) = f(x)— LV x € R.

Note that g is continuous of R with lim g(x) = lim g(x) =0.
xX—>+00 X—=>—00

There are three cases:

(Case 1)

(Case 2)

(Case 3)

Suppose g(x) =0V x € R,

that is g is a zero constant function,

then global maximum of g = global minimum of g = 0 (attains at everywhere).
Hence, global maximum of f = global minimum of f = L (attains at everywhere).

Suppose g(c) > 0 for some ¢ € R.

Take € = @ >0,by lim g(x)= lim g(x)=0€R,
2 X—+00 X——00
we can find M’ < 0and M > 0, such that|g(x)| < &g = % Vx>Morx <M.

In particular, g(x) < % Vx>Morx <M. (¥

Also, we know ¢ € [M’, M] since x = ¢ does not satisfy |g(x)| < %
Note that g is continuous on [M’, M], by Maximum Minimum Value Theorem,
there exist some x* € [M’, M] C R, such that g(x*) > g(x) Vx € [M', M]. (¥%)

If x > M or x < M’, combine (*) and (**), we have
(c)
80 < T2 < g(e) < g,

This means g(x*) > g(x) V x € R,

that is f(x*) > f(x) V x € R by adding L on both sides.
Hence, f attain a global maximum at x*.

Suppose g(c) < 0 for some ¢ € R.

Then —g(c) > O for that ¢ € R, apply (case 2) on —g,

there exist some x, € R, such that —g(x,) > —g(x) Vx € R.
That is, g(x,) < g(x) Vx € R and

hence, f(x,) < f(x) V x € R by adding L on both sides.

However, these f may not attain both global minimum and maximum.

Consider the counter example: f(x) = N !
+

VxeR.

x2

Note that f is well-defined continuous function on R (since 1 + x2 > 0V x € R)

and lim f(x)= lim f(x)=0.
X—+00 X—=—00

Also, f attains a global maximum 1 at x = 0.

However, if f attained a global minimum at x = ¢ € R,
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WLOG, assume ¢ > 0, note that f(c + 1) < f(c) which is a contradiction.

Hence, f does NOT attain a global minimum.

If the limit of f as x tends to +o0 is NOT same, the result may fail.

1- >
Consider the counter example: f(x) = 1 1 +x2 .
1, ifx<O

ifx>0

1+x2
Note that f is continuous on R. (please check it at least for x = 0 yourself!)
Also, XETmf(x) =1and xEI}loof(x) =-1.
By same skill above, consider f is increasing on R, (I left it as exercise.)

f does NOT attain ANY global maximum and minimum.

4.4 Intermediate Value Theorem
4.4.1 Main Statement
Let f : [a, b] — R be a continuous function on [a, b] for some a,b € R with a < b.

for any k € R between f(a) and f(b), there exist & € [a, b], such that (&) = k.

4.4.2 Question

Let f : R - R be a continuous function on R.

If lir+n f(x) =4+c0 and lim f(x)= —oo, then f is surjective.
X—>+00 X—>—00

Answer
Pick any y € R,
by xl_i)r+noo f(x) = 400 and xErElm f(x) = —o00, we can find M’ < 0and M > 0,
such that f(x) > yVx> M and f(x) <yVx < M.
In particular, f(M) > y > f(M").
By Intermediate Value Theorem, we can find x, € (M’, M) C R such that y = f(x;).
Thatis,VyeR, 3x € R, s.t. y = f(x).

Hence, f : R — R is surjective.
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