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1 The Real Numbers
1.1 Axioms of Real Numbers

(A1) a + b = b + a, ∀ a, b ∈ ℝ,

(A2) (a + b) + c = (a + (b + c)), ∀ a, b, c ∈ ℝ,

(A3) ∃ 0 ∈ ℝ, s.t. 0 + a = a = a + 0 ∀ a ∈ ℝ,

(A4) ∀ a ∈ ℝ, ∃ b ∈ ℝ, s.t. a + b = 0 = b + a. Then we denote this b as −a,

(M1) a ⋅ b = b ⋅ a ∀ a, b ∈ ℝ.

(M2) (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) ∀ a, b, c ∈ ℝ,

(M3) ∃ 1 ∈ ℝ, s.t. 1 ⋅ a = a = a ⋅ 1 ∀ a ∈ ℝ,

(M4) ∀ a ∈ ℝ ⧵ {0}, ∃ b ∈ ℝ, s.t. a ⋅ b = 1 = b ⋅ a. Then we denote this b as 1
a
,

(D1) a ⋅ (b + c) = a ⋅ b + a ⋅ c ∀ a, b, c ∈ ℝ,

(D2) 0 ≠ 1,

(O1) Given a, b ∈ ℝ, there are one and the only one of the following case will occur:

∙ a = b ∙ a < b ∙ a > b

(O2) if a > b for some a, b ∈ ℝ, then a + c > b + c ∀ c ∈ ℝ,

(O3) if a > b for some a, b ∈ ℝ, then ac > bc ∀ c > 0,

(O4) if a > b and b > c for some a, b, c ∈ ℝ, then a > c.

(Completeness) Every bounded above nonempty subset in ℝ has a Supremum in ℝ.

1.2 Properties of Real Numbers

(i) 0, 1 are unique, −a is unique for each a ∈ ℝ, 1
a
is unique for each a ∈ ℝ ⧵ {0},

(ii) if a + c = b + c for some a, b, c ∈ ℝ, then a = b.

(iii) a ⋅ 0 = 0 ∀ a ∈ ℝ,

(iv) −a = (−1) ⋅ a ∀ a ∈ ℝ,

(v) −(−a) = a ∀ a ∈ ℝ,

(vi) (−a)(−b) = a ⋅ b ∀ a, b ∈ ℝ,

(vii) if a > b for some a, b ∈ ℝ, then −a < −b,

(viii) if a > b for some a, b ∈ ℝ, then ca < cb ∀ c < 0,

(ix) a2 ∶= a ⋅ a > 0 ∀ a ∈ ℝ ⧵ {0}.

(x) 1 > 0,

(xi) 2 > 1 > 1
2
> 0,

(xii) if a ∈ ℝ satisfies 0 ≤ a < " ∀ " > 0, then a = 0.
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Proof

(i) Suppose 0′ ∈ ℝ also satisfies (A3), then by (A3) of 0 and 0′,we have 0 = 0 + 0′ = 0′.

The other cases are similar, so I left them as exercise.

(ii) Note that

a
(A3)
= a + 0
(A4)
= a + [c + (−c)]
(A2)
= (a + c) + (−c)
assumption

= (b + c) + (−c)
(A2)
= b + [c + (−c)]
(A4)
= b + 0
(A3)
= b.

(iii) Note that 0 + a ⋅ 0
(A3)
= a ⋅ 0

(A3)
= a ⋅ (0 + 0)

(D1)
= a ⋅ 0 + a ⋅ 0, by (ii), we have a ⋅ 0 = 0.

(iv) Note that

(−1) ⋅ a
(A3)
= (−1) ⋅ a + 0
(A4),(A2)

= [(−1) ⋅ a + a] + (−a)
(M3)
= [(−1) ⋅ a + 1 ⋅ a] + (−a)

(D1)
= (−1 + 1) ⋅ a + (−a)

(A4)
= 0 ⋅ a + (−a)
(iii)
= 0 + (−a)
(A3)
= −a

(v) By (A4), a + (−a) = 0 = (−a) + a, since −(−a) is unique by (i), we have −(−a) = a by (A4).

(vi) Note that

(−a)(−b)
(iv)
= [(−1) ⋅ a][(−1) ⋅ b]
(M1),(M2)

= [(−1) ⋅ (−1)](a ⋅ b)
(iv)
= [−(−1)](a ⋅ b)
(v)
= 1 ⋅ (a ⋅ b)
(M3)
= a ⋅ b

(vii) Note that

a > b

0
(A4)
= a + (−a)

(O2)
> b + (−a)

(A1)
= −a + b

−b
(A3)
= 0 + (−b)

(O2)
> (−a + b) + (−b)

(A2),(A4)
= −a + 0

(A3)
= −a

(viii) Fixed any c < 0, by (vii), −c > 0. Hence, −ca > −cb by (O3), so ca < cb by (vii) and (v).

(ix) By (O1), there are two cases:
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(Case 1) Suppose a > 0, then a2
(O3)
> a ⋅ 0

(iii)
= 0.

(Case 2) Suppose a < 0, then a2
(viii)
> a ⋅ 0

(iii)
= 0.

(x) Suppose it were not true that 1 > 0, By (O1) and (D2), we have 1 < 0.

By (M3), (vi), (ix), we have 1 = 1 ⋅ 1 = (−1)2 > 0, which contradict with 1 < 0 by (O1).

Therefore, 1 > 0.

(xii) Note that 2 ∶= 1 + 1
(O2),(x)
> 1 + 0

(A3)
= 1. Hence, 2 > 0 by (O4).

So 1
(M4)
= 1

2
⋅ 2

(O3)
> 1

2
⋅ 1

(M3)
= 1

2
.

Suppose it were not true that 1
2
> 0. By (O1), there are two cases:

(Case 1) Suppose 1
2
= 0, then 1

(A4)
= 2 ⋅ 1

2
(iii)
= 0, which contradict with (D2).

(Case 2) Suppose 1
2
< 0, then 1

(A4)
= 2 ⋅ 1

2
(O3)
< 2 ⋅ 0

(iii)
= 0, which contradict with (x) and (O1).

Hence, 1
2
> 0.

(xii) Suppose it were true that a ≠ 0, by (O1) and assumption, a > 0,

Then, a
(M3)
= a ⋅ 1

(xi),(O3)
> a ⋅ 1

2
(xi),(O3)
> 0, which contradict with the assumption if " = a ⋅ 1

2
.

Hence, a = 0.

1.3 Bernoulli’s Inequality
If x > −1, then (1 + x)n ≥ 1 + nx for any n ∈ ℕ.

Proof

Use Induction on n, it is obvious when n = 1.

Suppose the inequality holds for some n = k ∈ ℕ, i.e. (1 + x)k ≥ 1 + kx. Then

(1 + x)k+1 = (1 + x)(1 + x)k

≥ (1 + x)(1 + kx) By Induction Hypothesis
= 1 + kx + x + kx2

≥ 1 + (k + 1)x since x2 ≥ 0,

the statement is true when n = k + 1,

by principal of M.I., (1 + x)n ≥ 1 + nx ∀ n ∈ ℕ.

Remark

With similar skill, we have if x > −1, then (1+x)n ≥ 1+nx+ 1
2n(n−1)x2 for any n ∈ ℕ with n ≥ 2.
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1.4 Bounded Above and Below, Sup and Inf, Max and Min
1.4.1 Definition

Let ∅ ≠ S ⊂ ℝ. Then

(i) S is said to be bounded above (below resp.) if ∃ u ∈ ℝ, s.t. s ≤ u ∀ s ∈ S (s ≥ u ∀ s ∈ S resp.).

In this case, u is called an upper (lower resp.) bound of S.

Also, S is said to be bounded if S is both bounded above and below.

(ii) Suppose S bounded above, u ∈ ℝ is said to be a supremum of S, or we denote u as SupS if

(a) u is an upper bound of S,
(b) if v is another upper bound of S, then v ≥ u.

(iii) Suppose S bounded below, l ∈ ℝ is said to be an infimum of S, or we denote l as InfS if

(a) l is a lower bound of S,
(b) if k is another lower bound of S, then l ≥ k.

(iv) Suppose S bounded above (below resp.), u ∈ ℝ is said to be maximum (minimum resp.) of S,

or we denote u as MaxS (MinS resp.) if

(a) u ∈ S,
(b) u ≥ s ∀ s ∈ S (s ≥ u ∀ s ∈ S resp.).

remark

∙ MaxS, MinS may not exist even if S is bounded. (see example below)

∙ SupS, InfS, MaxS, MinS is unique if they exist. (Why?)

1.4.2 Property (equivalent definition of Sup)

Let u be an upper bound of ∅ ≠ S ⊂ ℝ.

Then u =SupS if and only if ∀ " > 0, ∃ s0 ∈ S, s.t. s0 > u − ".

Idea

A number is NOT an upper bound of S if it (strictly) less than u.

Proof

(⟸) Fixed any v be an upper bound of S. Suppose it were true that v < u.

Take " = u − v > 0, by assumption, ∃ s0 ∈ S, s.t. s0 > u − " = v.

So v is NOT an upper bound, contradiction arise. Hence, v ≤ u, so u =SupS.

(⟹) Fixed any " > 0, note that u − " < u.

By def of Sup, u − " is NOT an upper bound of S.

Therefore, ∃ s0 ∈ S, s.t. s0 > u − ".

1.4.3 Corollary

IfM ∶=MaxS exists in ℝ, thenM =SupS.

Proof

Note thatM > M − " ∀ " > 0 andM ∈ S, the result follow by last prop.

Remark

Similarly, we have the following property:

Let l be a lower bound of ∅ ≠ S ⊂ ℝ.

Then l =InfS if and only if ∀ " > 0, ∃ s0 ∈ S, s.t. s0 < l + ".
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1.4.4 Example

Let S = (−∞, 1) ∶= {x ∈ ℝ ∶ x < 1}, Show that S has no maximum and SupS = 1.

Answer

Suppose S has the maximumM , thenM ∈ S, i.e. M < 1. LetM ′ =M + 1
2 (1 −M).

Since 1 −M > 0 and 1
2 > 0, we haveM ′ > M .

Since 1 −M > 0 and 1
2 < 1, we haveM ′ < M + (1 −M) = 1.

This meansM ′ ∈ S withM ′ > M , which contradict withM is the maximum of S.

So S has no maximum.

By def of S, we have 1 > s ∀ s ∈ S. Hence, S bounded above with an upper bound 1.

By Completeness Axiom of ℝ, SupS exists in ℝ. Fixed any " > 0, define s0 = 1 − "
2 .

Since " > 0 and 1
2 > 0, so s0 = 1 − "

2 < 1. Since " > 0 and 1
2 < 1, so s0 = 1 − "

2 > 1 − ".

Therefore, s0 ∈ S with s0 > 1 − ", by prop 1.4.2 , SupS = 1.

1.4.5 Property (Sup and subset)

Suppose ∅ ≠ A ⊂ B ⊂ ℝ, and A, B bounded above, then SupA ≤SupB.

Proof

Let u =SupB. Then u ≥ b ∀ b ∈ B.

In fact, since A ⊂ B, so u ≥ a ∀ a ∈ A, i.e. u is an upper bound of A.

By definition of Sup, SupB = u ≥SupA.

Challenging Question

Please define Sup∅ and Inf∅ and explain why.

1.4.6 Property (Sup and +, ⋅)

Let S, T be an bounded above subset of ℝ.

We define a + S ∶= {a + s|s ∈ S} and aS ∶= {as|s ∈ S} for any a ∈ ℝ.

Also, we define S + T ∶= {s + t|s ∈ S, t ∈ T }.

Then

(i) Sup(a + S) = a+SupS ∀ a ∈ ℝ,
(ii) Sup(aS) = aSupS ∀ a > 0,
(iii) Inf(aS) = aSupS ∀ a < 0. In particular, Inf(−S) = −SupS,
(iv) S + T is bounded above with Sup (S + T ) = SupS + SupT .

Proof

(i) Let u =SupS. By def of Sup, u > s ∀ s ∈ S.

Hence a + u > as ∀ s ∈ S, i.e. a + u > r ∀ r ∈ a + S.

Hence a + S is bounded above with an upper bound a + u.

Using equivalent definition of Sup,

∀ " > 0, ∃ s0 ∈ S, s.t. s0 > u − ".
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Then, ∀ " > 0, ∃ s0 ∈ S, s.t. a + s0 > a + u − ".

Then, ∀ " > 0, ∃ r0 ∈ a + S, s.t. r0 > a + u − ".

Hence, Sup(a + S) = a + u = a+SupS.

(ii) Let u =SupS, a > 0. By def of Sup, u > s ∀ s ∈ S.

Hence au > as ∀ s ∈ S, i.e. au > r ∀ r ∈ aS.

Hence aS is bounded above with an upper bound au.

Using equivalent definition of Sup,

∀ " > 0, ∃ s0 ∈ S, s.t. s0 > u −
"
a
. Note that "

a
>0.

Then, ∀ " > 0, ∃ s0 ∈ S, s.t. as0 > au − ".

Then, ∀ " > 0, ∃ r0 ∈ aS, s.t. r0 > au − ".

Hence, Sup(aS) = au = aSupS.

(iii) Let u =SupS. By def of Sup, u > s ∀ s ∈ S.

Hence −u < −s ∀ s ∈ S, i.e. −u < r ∀ r ∈ −S.

Hence −S is bounded below with a lower bound −u.

Using equivalent definition of Sup and Inf,

∀ " > 0, ∃ s0 ∈ S, s.t. s0 > u − ".

Then, ∀ " > 0, ∃ s0 ∈ S, s.t. −s0 < u + ".

Then, ∀ " > 0, ∃ r0 ∈ −S, s.t. r0 < u + ".

Hence, Inf(−S) = −u = −SupS.

(iv) Let u =SupS, v =SupT .

By def of Sup, u > s ∀ s ∈ S and v > t ∀ t ∈ T .

Then u + v > s + t ∀ s ∈ S, t ∈ T , i.e. u + v > r ∀r ∈ S + T .

Hence S + T is bounded above with an upper bound u + v.

Using equivalent definition of Sup,

∀ " > 0, ∃ s0 ∈ S, t0 ∈ T , s.t. s0 > u −
"
2
and t0 > v −

"
2
.

Then, ∀ " > 0, ∃ s0 ∈ S, t0 ∈ T , s.t. s0 + t0 > u + v − ".

Then,∀ " > 0, ∃ r0 ∈ S + T , s.t. r0 > u + v − ".

Hence, Sup(S + T ) = u + v =SupS+SupT .

1.4.7 Definition (Bounded, Sup, Inf of Real-Valued Function)

Given f ∶ D → ℝ be a real-valued function defined on D.

Then f is said to be bounded above (resp. below)

if the set {f (x) ∈ ℝ ∶ x ∈ D} is bounded above (resp. below).

An upper (resp. lower) bound of {f (x) ∈ ℝ ∶ x ∈ D}

is also called an upper (resp. lower) bound of f on D.

f is said to be bounded if f is both bounded above and below.

If f is bounded above, We define Supremum of f on D by Sup
x∈D

f (x) = Sup{f (x) ∈ ℝ ∶ x ∈ D}.

If f is bounded below, We define Infimum of f on D by Inf
x∈D

f (x) = Inf{f (x) ∈ ℝ ∶ x ∈ D}.
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1.4.8 Property

Given f, g ∶ D → ℝ be a real-valued functions defined on D.

Note that f + g is a real-valued functions defined on D

such that (f + g)(x) = f (x) + g(x) ∀ x ∈ D. Then

(i) If f (x) ≤ g(x) ∀ x ∈ D, Then Sup
x∈D

f (x) ≤ Sup
x∈D

g(x).

(ii) Sup
x∈D

(f + g)(x) ≤ Sup
x∈D

f (x) + Sup
x∈D

g(x).

Proof

(i) Let G = Sup
x∈D

g(x).

Then by def of Sup, G ≥ g(x) ≥ f (x) ∀ x ∈ D.

Then G is an upper bound of f on D.

By def of Sup, Sup
x∈D

g(x) = G ≥ Sup
x∈D

f (x).

(ii) Let F = Sup
x∈D

f (x), G = Sup
x∈D

g(x).

Then by def of Sup, F ≥ f (x) and G ≥ g(x) ∀ x ∈ D.

Hence F + G ≥ f (x) + g(x) = (f + g)(x) ∀ x ∈ D.

Then F + G is an upper bound of f + g on D.

By def of Sup, Sup
x∈D

f (x) + Sup
x∈D

g(x) = F + G ≥ Sup
x∈D

(f + g)(x).

Remark

The following statements are false, think about the counter example.

(i) If f (x) ≤ g(x) ∀ x ∈ D, Then Sup
x∈D

f (x) ≤ Inf
x∈D

g(x).

(ii) Sup
x∈D

(f + g)(x) = Sup
x∈D

f (x) + Sup
x∈D

g(x).

1.5 Archimedean Property
1.5.1 Main Statement

∀ x ∈ ℝ, ∃ nx ∈ ℕ, s.t. x ≤ nx.

Equivalently, ℕ is NOT bounded above.

Proof

Suppose it were true that ℕ is bounded above.

By Completeness Axiom of ℝ, u ∶=Sup ℕ exists.

By equivalent definition of Sup, ∃ m ∈ ℕ, s.t. m > u − 1, i.e. m + 1 > u.

By def of ℕ, m + 1 ∈ ℕ, but m + 1 > u,

which is a contradiction. Hence, ℕ is NOT bounded above.
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1.5.2 Corollary

Inf
{

1
n
∶ n ∈ ℕ

}

= 0.

Equivalently, ∀ " > 0, ∃ n ∈ ℕ, s.t. 0 < 1
n
< ".

Remark

This Corollary is sometimes referred to as the Archimedean Property.

Proof

Note that 1
n
> 0 ∀ n ∈ ℕ, so

{

1
n
∶ n ∈ ℕ

}

bounded below with a lower bound 0.

By Completeness Axiom of ℝ, w ∶=Inf
{

1
n
∶ n ∈ ℕ

}

exist in ℝ.

By def of Inf, w ≥ 0.

∀ " > 0, note that 1
"
> 0, by Archimedean Property,

∃ n ∈ ℕ, s.t. 0 < 1
"
< n, i.e. 0 < 1

n
< ".

By def of Inf, 0 ≤ w ≤ 1
n
< ", this is true ∀ " > 0.

By Prop 1.2(xii), Inf
{

1
n
∶ n ∈ ℕ

}

= w = 0.

1.5.3 Example

Let S =
{

n
2n

∶ n ∈ ℕ
}

. Find Sup S, Inf S (If exist).

Answer

Note that n + 1
2n+1

≤ n + n
2n+1

= n
2n

true ∀ n ∈ ℕ, so n + 1
2n+1

≤ n
2n

≤ ... ≤ 1
2
∈ S ∀ n ∈ ℕ.

Hence Max S = 1
2
, and so Sup S = 1

2
.

Note that n
2n
> 0 ∀ n ∈ ℕ. Then S is bounded below with lower bound 0.

By Completeness Axiom of ℝ, w = Inf S exists in ℝ, and w ≥ 0.

Fixed any " > 0, by Archimedean Property, ∃ n′ ∈ ℕ, s.t. 1
n′
< "

2
, i.e. 2

n′
< ". Then

0 ≤ w ≤ n′

2n′
= n′

(1 + 1)n′
Bernoulli′s

≤
Inequality

n′

1 + n′ + 1
2n

′(n′ − 1)
= 2

2
n′ + 2 + (n′ − 1)

= 2
n′ + 1 + 2

n′

≤ 2
n′
< ".

By Prop 1.2(xii), Inf S = w = 0.

1.6 Interval
1.6.1 Characterization of Interval

Let ∅ ≠ S ⊂ ℝ.

S is an interval if and only if ∀ x, y ∈ S with x < y, we have [x, y] ⊂ S.
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1.6.2 Property (Union of Interval)

Let {In}∞n=1 be sequence of interval.

If
∞
⋂

n=1
In ∶= {x ∈ ℝ ∶ x ∈ In ∀ n ∈ ℕ} is non-empty,

then
∞
⋃

n=1
In ∶= {x ∈ ℝ ∶ x ∈ In for some n ∈ ℕ} is an interval.

Proof

Let z ∈
∞
⋂

n=1
In. Pick any x, y ∈

∞
⋃

n=1
In with x < y, we want to show [x, y] ⊂

∞
⋃

n=1
In.

By def of union, ∃ nx, ny, s.t. x ∈ Inx and y ∈ Iny .

By def of intersection, z ∈ Inx and z ∈ Iny .

(Case 1) Suppose x ≤ z < y.
By characterization of interval, [x, z] ⊂ Inx and [z, y] ⊂ Iny .

Hence, [x, y] = [x, z] ∪ [z, y] ⊂
∞
⋃

n=1
In.

(Case 2) Suppose z < x < y.
By characterization of interval, [z, y] ⊂ Iny .

Hence, [x, y] ⊂ [z, y] ⊂ Iny ⊂
∞
⋃

n=1
In.

(Case 3) Suppose x < y ≤ z.
it is similarly with Case 2.

In any case, [x, y] ⊂
∞
⋃

n=1
In. By characterization of interval,

∞
⋃

n=1
In is an interval.

1.6.3 Nested Interval Theorem

Let In ∶= [an, bn] be nested sequence (i.e. In+1 ⊂ In ∀ n ∈ ℕ) of CLOSED, BOUNDED intervals.

Then ∃ � ∈ ℝ, s.t. � ∈ In ∀ n ∈ ℕ. That is,
∞
⋂

n=1
In ≠ ∅.

Furthermore, if the length of the intervals bn − an satisfy Inf {bn − an ∶ n ∈ ℕ} = 0,

Then
∞
⋂

n=1
In is a singleton. That is, ∃! � ∈ ℝ, s.t.

∞
⋂

n=1
In = {�}.

1.6.4 Counter Example If Dropping Closed or Bounded Assumption

(Example 1) Let In =
(

0, 1
n

)

∀ n ∈ ℕ. Note that In+1 ⊂ In ∀ n ∈ ℕ.

Hence, In is nested sequence of (bounded but not closed) intervals.

Suppose it were true that
∞
⋂

n=1
In ≠ ∅. Let � ∈

∞
⋂

n=1
In.

By def of In, � > 0. But by Archimedean Property, ∃N ∈ ℕ, s.t. 0 < 1
N

< �.

It is a contradiction since � ∉ IN . Therefore,
∞
⋂

n=1
In = ∅.
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(Example 2) Let In = [n,+∞) ∀ n ∈ ℕ. Note that In+1 ⊂ In ∀ n ∈ ℕ.

Hence, In is nested sequence of (closed but not bounded) intervals.

Suppose it were true that
∞
⋂

n=1
In ≠ ∅. Let � ∈

∞
⋂

n=1
In.

Note that � ∈ ℝ. But by Archimedean Property, ∃N ∈ ℕ, s.t. � ≤ N .

It is a contradiction since � ∉ IN . Therefore,
∞
⋂

n=1
In = ∅.
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2 Sequences
2.1 Definition and Basic Property
2.1.1 Definition (Sequence)

A sequence in ℝ is a function a ∶ ℕ → ℝ.

We usually write a(n) as an. Also, we write the sequence a as

{an}, (an), {an}∞n=1 or (an)
∞
n=1

2.1.2 Definition (Limit of Sequence)

Let {xn} be a sequence in ℝ. We say xn converge to L ∈ ℝ if

∀ " > 0, ∃N ∈ ℕ, s.t. ∀ n ∈ ℕ with n ≥ N , we have|
|

xn − L|| < ".

In this case, we say L is a limit of xn and xn is a convergent sequence.

If xn has no limit in ℝ, then we say xn is a divergent sequence.

Remark

(i) When the question need you to prove L is the limit of sequence,

you CANNOT determine the value of ", you only know " is arbitrary (small) positive number,

and then find a (large)N (depends on ") satisfy the result.

(ii) When the question give you the result that L = lim
n
xn,

you can take any positive number of ",

could be 1, |x|
2

(for some x ≠ 0), or just write " > 0, depends on what is the conclusion.

then the assumption will give you a (large)N (you don’t know what thisN is),

such that|
|

xn − L|| ≤ " ∀ n ≥ N , and then using this fact to prove the result.

(iii) xn is divergent if ∀ L ∈ ℝ, ∃ "0 > 0, s.t. ∀N ∈ ℕ, ∃ n′ ≥ N , s.t. |
|

xn′ − L|| ≥ "0.

2.1.3 Property (Uniqueness of Limit)

Limit of a convergent sequence in ℝ is unique.

Therefore, if L ∈ ℝ is the limit of {xn}, we will write in this notation:

lim
n
xn = L OR xn → L as n→ ∞.

Proof

Let L,L′ ∈ ℝ be limits of a convergent sequence xn. Pick any " > 0,

∃N ∈ ℕ, s.t. ∀ n ≥ N , we have|
|

xn − L|| <
"
2
,

∃N ′ ∈ ℕ, s.t. ∀ n ≥ N ′, we have|
|

xn − L′
|

|

< "
2
.

TakeM =Max {N,N ′},

Then|
|

L − L′
|

|

≤ |

|

L − xM |

|

+|
|

xM − L′
|

|

< "
2
+ "

2
= ".

This true for any " > 0, so|
|

L − L′
|

|

= 0. Hence, L = L′.
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2.1.4 Example

Determine the following sequences are convergent / divergent.

If convergent, guess the limit and prove it by " −N definition. If divergent, give a reason.

(a) an =
1
n
,

(b) an = (−1)n,

(c) an =
5n + 2
n + 1

,

(d) an = rn given that 0 < r < 1.

Answer

(a) Guess an converge to 0.

Fixed any " > 0, by A.P., ∃N ∈ ℕ, s.t. 0 < 1
N

< ".

Note that ∀ n ≥ N , we have 0 < 1
n
≤ 1
N

< ",

that means ∀ n ≥ N , we have|
|

an − 0|
|

= 1
n
< ".

Hence, {an} convergent with lim
n
an = 0.

(b) Guess an divergent.

Fixed any L ∈ ℝ, take "0 =
1
2
Max

{

|

|

L − 1|
|

, |
|

L + 1|
|

}

> 0, fixed anyN ∈ ℕ,

(Case 1) Suppose "0 =
1
2
|

|

L − 1|
|

> 0.

Take n′ = 2N ≥ N , then|
|

an′ − L|| = |

|

1 − L|
|

= |

|

L − 1|
|

≥ "0.

(Case 2) Suppose "0 =
1
2
|

|

L + 1|
|

> 0.

Take n′ = 2N + 1 ≥ N , then|
|

an′ − L|| = |

|

−1 − L|
|

= |

|

L + 1|
|

≥ "0.

In any case, we can find n′ ≥ N s.t. |
|

an′ − L|| ≥ "0, hence, {an} divergent.

(c) Guess an converge to 5.

Fixed any " > 0, by A.P., ∃N ∈ ℕ, s.t. 0 < 1
N

< "
3
.

Note that ∀ n ≥ N , we have 0 < 3
n
≤ 3
N

< ",

that means ∀ n ≥ N , we have|
|

an − 5|
|

=
|

|

|

|

−3
n + 1

|

|

|

|

< 3
n
< ".

Hence, {an} convergent with lim
n
an = 5.

(d) Guess an converge to 0. [We want to use Bernoulli’s Inequality.]

Let q = 1
r
− 1 > 0, then r = 1

q + 1
.

Fixed any " > 0, by A.P., ∃N ∈ ℕ, s.t. 0 < 1
N

< q".

Note that ∀ n ≥ N , we have 0 < 1
nq

≤ 1
Nq

< ",

that means ∀ n ≥ N , we have|
|

an − 0|
|

= rn = 1
(q + 1)n

Bernoulli′s
≤

Inequality

1
1 + nq

≤ 1
nq

< ".

Hence, {an} convergent with lim
n
an = 0.
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2.1.5 Definition (Bounded)

A sequence xn is said to be bounded if ∃M > 0, s.t. |
|

xn|| < M ∀ n ∈ ℕ.

2.1.6 Property

Convergent sequence must be bounded.

Proof

Let
{

xn
}

be convergent sequence with limit x ∈ ℝ.

Take " = 1, ∃N ∈ ℕ, s.t. |
|

xn − x|| < " = 1 ∀ n ≥ N .

i.e. x − 1 < xn < x + 1 ∀ n ≥ N .

i.e. |
|

xn|| <Max
{

|

|

x − 1|
|

, |
|

x + 1|
|

}

∀ n ≥ N . (Remark: it is necessary since x + 1 can be negative.)

Hence,|
|

xn|| <Max
{

|

|

x1|| ,||x2|| , ...,||xN−1
|

|

,|
|

x − 1|
|

,|
|

x + 1|
|

}

∀ n ∈ ℕ

(Remark: This Max exist in ℝ since the set is finite.)

Hence,
{

xn
}

is bounded.

Remark

The converse is not true, the counter example is 2.1.4(b),

the sequence is bounded but not convergent.

2.1.7 Property

Fixed some m ∈ ℕ.

{xn}∞n=1 is a convergent sequence if and only if {xn+m}∞n=1 is also a convergent sequence.

In this case, lim
n
xn = lim

n
xn+m.

Idea

The limit/convergence of a sequence describe the mass behaviour of the terms for all n large,

it will NOT be affected by finitely many terms.

Proof

(⟹) Suppose xn converge to x ∈ ℝ.

Then fixed any " > 0, ∃N ∈ ℕ, s.t. ∀ n ≥ N , we have|
|

xn − x|| < ".

In particular, we have|
|

xn+m − x|
|

< " ∀ n + m ≥ N .

That is we have|
|

xn+m − x|
|

< " ∀ n ≥ N . (since m ≥ 1.)

Hence, we have xn+m converge to x.

(⟸) Suppose xn+m converge to x ∈ ℝ.

Then fixed any " > 0, ∃N ∈ ℕ, s.t. ∀ n ≥ N , we have|
|

xn+m − x|
|

< ".

LetN ′ = N + m ∈ ℕ, then we have|
|

xn − x|| < " ∀ n ≥ N ′.

Hence, we have xn converge to x.
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2.1.8 Property

Let
{

xn
}

be a convergent sequence with lim
n
xn = x.

If � < x < � for some �, � ∈ ℝ, show that ∃N ∈ ℕ s.t. � < xn < � ∀ n ≥ N .

Proof

Take "0 =Min{� − x, x − �} > 0, by xn converge to x,

∃N ∈ ℕ, s.t. |
|

xn − x|| < "0 ∀ n ≥ N ,

that is x − "0 < xn < x + "0 ∀ n ≥ N .

Note that " ≤ � − x and " ≤ x − � by definition of Min.

Hence, � = x − (x − �) ≤ x − "0 < xn < x + "0 ≤ x + (� − x) = � ∀ n ≥ N .

2.2 Monotone Convergent Theorem
2.2.1 Definition

∙ A sequence
{

xn
}

is said to be increasing if xn ≤ xn+1 ∀ n ∈ ℕ.

∙ A sequence
{

xn
}

is said to be decreasing if xn ≥ xn+1 ∀ n ∈ ℕ.

∙ A sequence is said to be monotone if it is increasing or decreasing.

2.2.2 Main Statement of Theorem

∙ An increasing sequence
{

xn
}

is convergent if and only if it is bounded above. In this case,

lim
n
xn = Sup

{

xn ∶ n ∈ ℕ
}

∙ An decreasing sequence
{

xn
}

is convergent if and only if it is bounded below. In this case,

lim
n
xn = Inf

{

xn ∶ n ∈ ℕ
}

Remark

The theorem is still true if the tail of the sequence is monotone.

2.2.3 Example

Let x1 = 8, xn+1 =
1
2
xn + 2 ∀ n ∈ ℕ. Show

{

xn
}

convergent and find the limit.

Answer

Use induction on n to show the sequence is decreasing and bounded below by 0.

Note 0 < x2 = 6 ≤ 8 = x1. Now assume 0 < xk ≤ xk−1 for some k ∈ ℕ.

Then xk+1 =
1
2
xk + 2 ≤ 1

2
xk−1 + 2 = xk and xk+1 =

1
2
xk + 2 > 0 + 2 > 0.

Then
{

xn
}

is a bounded below decreasing sequence and

hence convergent by Monotone Convergent Theorem.

Let x = lim
n
xn, then we have

lim
n
xn+1 =

1
2
lim
n
xn + 2

x = 1
2
x + 2

x = 4.
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2.3 Bolzano-Weierstrass Theorem
2.3.1 Definition

Let
{

xn
}∞
n=1 be a sequence in ℝ, and

{

nk
}∞
k=1 be a STRICTLY increasing sequence in ℕ. (i.e n1 < n2 < ... and nk ∈ ℕ ∀ k ∈ ℕ)

The sequence
{

xnk
}∞

k=1
is called a subsequence of

{

xn
}

.

2.3.2 Example

Let xn =
1

2n + 3
, nk = k2, the subsequence can be expression by this table:

k 1 2 3 k
nk 1 4 9 k2

xnk
1

2 + 3
= 1

5
1

8 + 3
= 1

11
1

18 + 3
= 1

21
1

2k2 + 3

2.3.3 Property

Let
{

xnk
}

be subsquence of
{

xn
}

in ℝ. Then

(i) nk ≥ k ∀ k ∈ ℕ.

(ii) if
{

xn
}

converge, then
{

xnk
}

converge to same limit.

Proof

(i) Use Induction on k, it is true when k = 1 since Min ℕ = 1.

Assume nl ≥ l for some l ∈ ℕ, then nl+1 > nl ≥ l, so nl+1 ≥ l + 1. (Why?)

Hence, nk ≥ k ∀ k ∈ ℕ.

(ii) Suppose lim
n
xn = x ∈ ℝ. Fixed any " > 0, we have someN ∈ ℕ, s.t. |

|

xn − x|| < " ∀ n ≥ N .

In particular, by (i), if k ≥ N , nk ≥ N , so||
|

xnk − x
|

|

|

< " ∀ k ≥ N . That is, lim
k
xnk = x.

2.3.4 Corollary

If the sequence
{

xn
}

(i) has a divergent subsequence, OR

(ii) has two convergent subsequence
{

xni
}

, and
{

xnj
}

with lim
i
xni ≠ lim

j
xnj ,

then
{

xn
}

is divergent.

2.3.5 Claim

Every sequence in ℝ has a monotone subsequence.

Proof

Let
{

xn
}

be a sequence in ℝ. We define xm is a "peak" if xm ≥ xn ∀ m ≤ n.

(Case 1) Suppose
{

xn
}

has infinitely many "peaks".
Then list the "peaks" xm1

, xm2
, ..., xmk , ... with m1 < m2 < ... < mk < ... .

By definition of "peak", we have xm1
≥ xm2

≥ ... ≥ xmk ≥ ...,

hence
{

xmk
}

is a decreasing subsequence.
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(Case 2) Suppose
{

xn
}

has finitely many "peaks".
Then list ALL "peaks" xm1

, xm2
, ..., xmN with m1 < m2 < ... < mN .

That means xn is NOT a "peak" if n > N .
Take n1 = N + 1 > N , since xn1 is not a "peak", then ∃ n2 > n1, s.t. xn2 > xn1 .
Since n2 > n1 > N , then xn2 is not a "peak", then ∃ n3 > n2 > n1, s.t. xn3 > xn2 > xn1 .
Repeat the process, we haveN < n1 < n2 < ... < nk < ...
such that xn1 < xn2 < ... < xnk < ...

that means
{

xnk
}

is a (strictly) incresing subsequence.

2.3.6 Bolzano-Weierstrass Theorem

Every bounded sequence has convergent subsequence.

Proof (from Monotone Convergent Theorem)

Let
{

xn
}

be bounded sequence. By the claim, there are a monotone subsequence
{

xnk
}

.

Since
{

xn
}

bounded, so
{

xnk
}

bounded. (Why?)

By Monotone Convergent Theorem,
{

xnk
}

converge.

2.4 Cauchy Convergent Theorem
2.4.1 Definition

A sequence in ℝ is said to be Cauchy if

∀ " > 0, ∃N ∈ ℕ, s.t. ∀ n, m ≥ N, we have |
|

xn − xm|| < ".

2.4.2 Main Statement of Theorem

A sequence in ℝ is convergent if and only if it is Cauchy.

2.5 Properly Divergent and Series
2.5.1 Definition

(i) A sequence
{

xn
}

in ℝ is said to be tends to +∞, denoted as lim
n
xn = +∞,

if ∀M > 0, ∃N ∈ ℕ, s.t. ∀ n ≥ N , we have xn > M .

(ii) A sequence
{

xn
}

in ℝ is said to be tends to −∞, denoted as lim
n
xn = −∞,

if ∀M > 0, ∃N ∈ ℕ, s.t. ∀ n ≥ N , we have xn < −M .

(iii) In this two cases, the sequence is called properly divergent.

2.5.2 Example involving summation

Let
{

xn
}

be a sequence in ℝ. Define
{

Sn
}

by

Sn =
1
n
(

x1 + x2 + ... + xn
)

= 1
n

n
∑

i=1
xi,

that is the mean of first n terms.

(a) If lim
n
xn = x ∈ ℝ, show that lim

n
Sn = x.

(b) If lim
n
xn = +∞, what can you say about lim

n
Sn? Provide the reason.
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(c) Is that true that
{

xn
}

is convergent given that
{

Sn
}

is convergent?

Answer

(a) Fixed any " > 0,

by lim
n
xn = x, ∃N1 ∈ ℕ, s.t. |

|

xn − x|| <
"
2
∀ n ≥ N1.

Now K ∶=
N1
∑

i=1

|

|

xi − x|| + 1 is a fixed constant, by A.P., ∃N2 ∈ ℕ, s.t. 1
N2

< "
2K

.

TakeN =Max
{

N1, N2
}

. If n ≥ N , we have

|

|

Sn − x|| =
1
n

|

|

|

|

|

|

n
∑

i=1
xi − nx

|

|

|

|

|

|

= 1
n

|

|

|

|

|

|

n
∑

i=1

(

xi − x
)

|

|

|

|

|

|

≤ 1
n

n
∑

i=1

|

|

xi − x||

= 1
n

N1
∑

i=1

|

|

xi − x|| +
1
n

n
∑

i=N1+1

|

|

xi − x||

< 1
N2

K + 1
n

n
∑

i=N1+1

"
2

< "
2
+
n −N1
n

"
2

≤ ".

Hence, we have lim
n
Sn = x.

(b) Guess lim
n
Sn = +∞. Fixed anyM > 0,

by lim
n
xn = +∞, ∃N1 ∈ ℕ, s.t. xn > 3M ∀ n ≥ N1.

Now K ∶=
N1
∑

i=1

|

|

xi|| is a fixed constant, by A.P., ∃N2 ∈ ℕ, s.t. K
M

< N2.

Note xi ≥ −|
|

xi|| ∀ i = 1, 2, ..., N1 − 1, so 1
n

N1
∑

i=1
xi ≥ −1

n

N1
∑

i=1

|

|

xi|| ≥ − K
N2

≥ −M ∀ n ≥ N2.

TakeN =Max
{

3N1, N2
}

. If n ≥ N , we have

1
n

n
∑

i=1
xi =

1
n

N1
∑

i=1
xi +

1
n

n
∑

i=N1+1
xi

> −M +
n −N1
n

(

3M
)

= −M +
(

1 −
N1
n

)

(

3M
)

≥ −M
(

1 −
N1
3N1

)

(

3M
)

= −M + 2
3
⋅ 3M

=M

Hence, we have lim
n
Sn = +∞.

(c) NO. Consider the counter example xn =
(

−1
)n,

Note
{

xn
}

is NOT a convergent sequence but Sn =

{

−1
n , if n is odd
0 , if n is even

converge to 0.
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Limit Superior and Limit Inferior
2.5.3 Definition

Let
{

xn
}

be a BOUNDED sequence in ℝ. We define

∙ lim sup
n

xn = lim
n

sup
k≥n

xk,

∙ lim inf
n

xn = lim
n

inf
k≥n

xk.

2.5.4 Equivalent Definition

Let
{

xn
}

be a bounded sequence in ℝ. Then lim sup
n

xn = x is equivalent to

(i) x = lim sup
n

xn = lim
n

sup
k≥n

xk = inf
n∈ℕ

sup
k≥n

xk, OR

(ii) ∀" > 0, x + " < xn for ONLY finitely many n ∈ ℕ
but x − " < xn for INFINTELY many n ∈ ℕ.

2.5.5 Property

Let
{

xn
}

be a bounded sequence in ℝ. Then
{

xn
}

is convergent if and only if lim sup
n

xn = lim inf
n

xn.

In this case, we have lim sup
n

xn = lim
n
xn = lim inf

n
xn.

Proof

(⟹) Suppose lim
n
xn = x ∈ ℝ. Fixed any " > 0, ∃N ∈ ℕ, s.t. |

|

xn − x|| <
"
2
∀ n ≥ N .

That is, x − "
2
< xn < x +

"
2
∀ n ≥ N . Therefore, for any n ≥ N , we have

x − "
2
< sup

k≥n
xk ≤ x + "

2
and x − "

2
≤ inf
k≥n

xk < x +
"
2
.

Hence, we have
|

|

|

|

|

sup
k≥n

xk − x
|

|

|

|

|

≤ "
2
< " and

|

|

|

|

inf
k≥n

xk − x
|

|

|

|

≤ "
2
< " ∀ n ≥ N .

Hence, lim sup
n

xn = x = lim inf
n

xn.

(⟸) Suppose lim sup
n

xn = lim inf
n

xn = x ∈ ℝ. Fixed any " > 0,

∃N1 ∈ ℕ, s.t.
|

|

|

|

|

sup
k≥n

xk − x
|

|

|

|

|

< " ∀n ≥ N1, in particular, sup
k≥n

xk < x + " ∀ n ≥ N1.

∃N2 ∈ ℕ, s.t.
|

|

|

|

inf
k≥n

xk − x
|

|

|

|

< " ∀n ≥ N2, in particular, inf
k≥n

xk > x − " ∀ n ≥ N2.

Hence, for any n ≥ N ∶= Max {N1, N2}, we have

x − " < inf
k≥N

xk ≤ xn ≤ sup
k≥N

xk < x + ".

That is, we have|
|

xn − x|| ≤ " ∀ n ≥ N .

Therefore,
{

xn
}

is convergent with lim
n
xn = x.
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2.5.6 Property

Let
{

xn
}

,
{

yn
}

be bounded sequences in ℝ. Then

lim sup
n

(

xn + yn
)

≤ lim sup
n

xn + lim sup
n

yn.

Proof

Note for any n ∈ ℕ, xm + ym ≤ sup
k≥n

xk + sup
k≥n

yk ∀ m ≥ n,

Hence sup
k≥n

(

xk + yk
)

≤ sup
k≥n

xk + sup
k≥n

yk ∀ n ∈ ℕ. Therefore,

lim sup
n

(

xk + yk
)

≤ lim
n

(

sup
k≥n

xk + sup
k≥n

yk

)

= lim sup
n

xn + lim sup
n

yn.

Remark

The inequality may be occur. Think about xn = (−1)n and yn = (−1)n+1.
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3 Limit of Function
3.1 Basic Property
3.1.1 Definition (Neighborhood)

Let c ∈ ℝ, � > 0, we denote the �−neighborhood of c as

V� ∶= (c − �, c + �) =
{

x ∈ ℝ ∶ |x − c| < �
}

.

3.1.2 Definition (Cluster Point)

Let A ⊂ ℝ. A point c ∈ ℝ is said to be a cluster point w.r.t. A if

∀ " > 0, ∃ x ∈ A with x ≠ c, s.t. |x − c| < " (Or x ∈ V"(c) ⧵ {c}).

Remark

A cluster point c ∈ ℝ w.r.t. A may NOT be in A. (Consider A = ℝ ⧵ {0}, c = 0)

A point a ∈ A may NOT be a cluster point w.r.t A. (Consider A = {0}, a = 0)

3.1.3 Definition (Limit of Function)

Let ∅ ≠ A ⊂ ℝ, f ∶ A → ℝ be a function, c ∈ ℝ be a cluster point w.r.t. A.

L ∈ ℝ is said to be a limit of f at c if

∀ " > 0, ∃ � > 0, s.t. ∀ x ∈ (c − �, c + �) with x ≠ c, we have |
|

f (x) − L|
|

< ".

By some property, we know the limit of f at c is unique if it exists,

hence we will denote the above case as

lim
x→c

f (x) = L or f (x) → L as x→ c

3.1.4 Definition

Sometime, we will discuss different types of limit of function.

For example, we will discuss f tends to infinity or as x tends to infinity or the one-sided limit.

It will be difficult to remember all the cases. But the patterns of them are similar.

lim
x→c

f (x) = L if ∀ Statement A, ∃ Statement B, s.t. ∀ x ∈ ℝ with Statement C, we have Statement D.

Cases Notation Statement A Statement B Statement C Statement D
Two-sided limit lim

x→c
f (x) =?? - � > 0 0 < |x − c| < � -

RHS one-sided limit lim
x→c+

f (x) =?? - � > 0 0 < x − c < � -
LHS one-sided limit lim

x→c−
f (x) =?? - � > 0 0 < c − x < � -

limit as x→ +∞ lim
x→+∞

f (x) =?? - N > 0 x ≥ N -
limit as x→ −∞ lim

x→−∞
f (x) =?? - N > 0 x ≤ −N -

limit tends to L ∈ ℝ lim
x→??

f (x) = L " > 0 - - |

|

f (x) − L|
|

< "

limit tends to +∞ lim
x→??

f (x) = +∞ M > 0 - - f (x) > M

limit tends to −∞ lim
x→??

f (x) = −∞ M > 0 - - f (x) < −M

Example

lim
x→2−

f (x) = +∞ means ∀M > 0, ∃ � > 0, s.t. ∀ x ∈ ℝ with 0 < x − 2 < �, we have f (x) > M .
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3.1.5 Example

Guess the limit and proof by definition.

(i) lim
x→−1

x2

x + 2
(Ans: 1)

(ii) lim
x→2

x3 + 3
x − 1

(Ans: 11)

(iii) lim
x→1−

x
x − 1

(Ans: −∞)

(iv) lim
x→−∞

x2

2x2 − 1
(Ans: 1

2
)

Answer

(i) Fixed any " > 0, take � =Min
{

1
2
, "
8

}

> 0, if x ∈ ℝ with 0 < |
|

x + 1|
|

< �, we have

−1 − � < x < −1 + �

−3
2
< x < −1

2
< 0.

That is, 0 < 1
2
< x + 2 < 2 and hence 1

2
< 1
x + 2

< 2, and also,|x| < 3
2
< 2.

If x ∈ ℝ with 0 < |
|

x + 1|
|

< �, we have

|

|

|

|

|

x2

x + 2
− 1

|

|

|

|

|

=
|

|

|

|

|

x2 − x − 2
x + 2

|

|

|

|

|

= |

|

x − 1|
|

|

|

|

|

x − 2
x + 2

|

|

|

|

≤ 2�
(

|x| + 2
)

≤ 8� < ".

Hence, lim
x→−1

x2

x + 2
= 1.

(ii) Fixed any " > 0, take � = Min
{

1
2
, "
40

}

> 0, if x ∈ ℝ with 0 < |
|

x − 2|
|

< �, we have

2 − � < x < 2 + �

0 < 3
2
< x < 5

2
.

That is, 0 < 1
2
< x− 1 < 3

2
and hence 2

3
< 1
x − 1

< 2, and also,|x|2 + 2|x|+ 7 < 25
4

+ 5 + 7 < 20.

If x ∈ ℝ with 0 < |
|

x − 2|
|

< �, we have

|

|

|

|

|

x3 + 3
x − 1

− 11
|

|

|

|

|

=
|

|

|

|

|

x3 − 11x + 14
x − 1

|

|

|

|

|

= |

|

x = 2|
|

|

|

|

|

|

x2 + 2x − 7
x − 1

|

|

|

|

|

≤ 2�
(

|x|2 + 2|x| + 7
)

≤ 40� < ".

Hence, lim
x→−1

x3 + 3
x − 1

= 11.

(iii) Fixed anyM > 0, take � = 1
M + 1

> 0, if x ∈ ℝ with 0 < 1 − x < �, we have

−x < −1 − 1
M + 1

= − M
M + 1

x > M
M + 1

Mx + x > M SinceM + 1 > 0
x > −M(x − 1)

x
x − 1

< −M Since x − 1 < 0

21



(iv) Fixed any " > 0, by A.P., ∃M ∈ ℕ, s.t. 1
M

< ", W.L.O.G, assumeM ≥ 2.

If x < −M , then x2 > M2 > M , and so

|

|

|

|

|

x2

2x2 − 1
− 1

2

|

|

|

|

|

=
|

|

|

|

|

1
2(2x2 − 1)

|

|

|

|

|

≤ 1
4M2 − 2

≤ 1
M

≤ ".

Hence, lim
x→−∞

x2

2x2 − 1
= 1

2
.

3.2 Sequential Criterion
3.2.1 Sequential Criterion for Limit of Function

Let f ∶ A → ℝ, c ∈ ℝ is a cluster point of A. Let L ∈ ℝ. Then

lim
x→c

f (x) = L if and only if

lim
n
f (an) = L for any sequence {an} with an ∈ A ⧵ {c} ∀ n ∈ ℕ and lim

n
an = c.

3.2.2 Sequential / Cauchy Criterion for Limit of Function

Let f ∶ A → ℝ, c ∈ ℝ is a cluster point of A. Let L ∈ ℝ.

The following statements are equivalent:

(i) lim
x→c

f (x) exists in ℝ.

(ii) (Sequential Criterion)
lim
n
f (xn) exists for any sequence {xn} with xn ∈ A ⧵ {c} ∀ n ∈ ℕ and lim

n
xn = c.

(the limits are NOT necessarily same for each sequence, but in fact they are same.)
(iii) (Cauchy Criterion)

∀ " > 0, ∃ � > 0, s.t. ∀ x, x′ ∈ A with 0 < |x − c| < � and 0 < |
|

x′ − c|
|

< �,
we have|

|

f (x) − f (x′)|
|

< ".

Proof

(i)⟹ (iii) Suppose lim
x→c

f (x) = L ∈ ℝ. Fixed any " > 0,

we can find some � > 0, such that|
|

f (w) − L|
|

< "
2
∀ w ∈ A with 0 < |w − c| < �.

If x, x′ ∈ A with 0 < |x − c| < � and 0 < |
|

x′ − c|
|

< �, we have

|

|

|

f (x) − f (x′)||
|

≤ |

|

f (x) − L|
|

+||
|

f (x′) − L||
|

< "
2
+ "

2
= ".

(iii) ⟹ (ii) Suppose f satisfy (iii).

Pick arbitrary sequence {xn} with xn ∈ A ⧵ {c} ∀ n ∈ ℕ and lim
n
xn = c.

Fixed any " > 0, by assumption, we can find some � > 0, s.t.

∀ x, x′ ∈ A with 0 < |x − c| < � and 0 < |
|

x′ − c|
|

< �, we have|
|

f (x) − f (x′)|
|

< ". (*)

For this � > 0, by convergence and assumption of {xn}, ∃N ∈ ℕ, s.t. 0 < |
|

xn − c|| < � ∀ n ≥ N .

By (*), we have|
|

f (xn) − f (xm)|| < " ∀ n, m ≥ N .

Hence, {f (xn)} is Cauchy and so Convergent by Cauchy Convergent Theorem for Sequence.

(ii) ⟹ (i) Suppose f satisfy (ii).

Claim: lim
n
f (xn) is SAME whenever {xn} is a sequence with xn ∈ A ⧵ {c} ∀ n ∈ ℕ and lim

n
xn = c.
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Proof Let {xn}, {yn} be two sequences satisfying
xn, yn ∈ A ⧵ {c} ∀ n ∈ ℕ and lim

n
xn = c = lim

n
yn.

Suppose lim
n
f (xn) = L and lim

n
f (yn) = L′ for some L,L′ ∈ ℝ.

Now, we construct a new sequence {zn} by z2n = xn and z2n−1 = yn for any n ∈ ℕ.
Then zn ∈ A ⧵ {c} ∀ n ∈ ℕ and lim

n
zn = 0. (I left this statement as exercise.)

Hence, limn f (zn) = L′′ for some L′′ ∈ ℝ.
Note that {f (xn)}, {f (yn)} are subsequences of {f (zn)} and so we must have L = L′′ = L′.

By the claim, ∃ L ∈ ℝ, s.t. for any sequence {xn} with xn ∈ A ⧵ {c} ∀ n ∈ ℕ and lim
n
xn = c,

we have lim
n
f (xn) = L. (**)

Suppose it were true that lim
x→c

f (x) does not exist. In particular, lim
x→c

f (x) ≠ L.

∃ "0 > 0, s.t. ∀ n ∈ ℕ, ∃ an ∈ A with 0 < |
|

an − c|| <
1
n
, s.t. |

|

f (an) − L|| ≥ "0.

Note {an} is a sequence with an ∈ A ⧵ {c} and lim
n
an = c BUT lim

n
f (an) ≠ L.

Contradiction with (**). Hence, lim
x→c

f (x) = L ∈ ℝ.
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4 Continuous Function
4.1 Basic Property
4.1.1 Definition

Let f ∶ A → ℝ, A non-empty subset of ℝ, let c ∈ A.

f is said to be continuous at c if

∀ " > 0, ∃ � > 0, s.t. ∀x ∈ A with|x − c| < �, we have|
|

f (x) − f (c)|
|

< ".

Also, f is said to be continuous on A if f is continuous at every c ∈ A.

Remark

(i) c must need to be in A, otherwise, f (c) is NOT well-defined.

(ii) It is NOT necessary for c to be a cluster point of A.

(iii) If c is not a cluster point of A (we called it isolated point), then f is automatically continuous at c.

(iv) If c is a cluster point of A, then f is continuous at c is equivalent to

lim
x→c
x∈A

f (x) = f (c),

but in this course, please do NOT use this equivalent definition.

4.1.2 Property

If f, g ∶ A→ ℝ are continuous at c ∈ A, then fg is also continuous at c.

Proof

Suppose f, g ∶ A → ℝ are continuous at c ∈ A.

Claim: g is locally bounded at 0. i.e. ∃M > 0, �1 > 0, s.t. |
|

g(x)|
|

< M ∀ x ∈ A with|x − c| < �1.

Proof Take "0 = 1, since g is continuous at c, ∃ �1 > 0, s.t.
|

|

g(x) − g(c)|
|

< "0 = 1 ∀ x ∈ A with|x − c| < �1.
That is, f (x) <Max

{

|

|

g(c) + 1|
|

,|
|

g(c) − 1|
|

}

=∶M ∀ x ∈ A with|x − c| < �1.

Fixed any " > 0, by f, g continuous at c, we can find

�2 > 0, s.t. ∀x ∈ A with|x − c| < �2, we have||f (x) − f (c)|| <
"

2M
and

�3 > 0, s.t. ∀x ∈ A with|x − c| < �3, we have||g(x) − g(c)|| <
"

2|
|

f (c)|
|

+ 1
.

Take � =Min {�1, �2, �3} > 0, if x ∈ A with|x − c| < �, we have

|

|

f (x)g(x) − f (c)g(c)|
|

≤ |

|

f (x) − f (c)|
|

|

|

g(x)|
|

+|
|

f (c)|
|

|

|

g(x) − g(c)|
|

≤ "
2M

⋅M +|
|

f (c)|
|

⋅
"

2|
|

f (c)|
|

+ 1

≤ "
2
+ "

2
= ".

Hence, fg is also continuous at c.
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4.1.3 Property

Let A,B ⊂ ℝ.

If f ∶ B → ℝ, g ∶ A → B are continuous functions, then f◦g is also continuous on A.

Proof

Fixed any " > 0, Fixed any c ∈ A, by continuity of f ,

we can find � > 0, s.t. ∀ y ∈ B with|
|

y − g(c)|
|

< �, we have||
|

f (y) − f
(

g(c)
)

|

|

|

< ". (*)

For this � > 0, by continuity of g,

we can find � > 0, s.t. ∀ x ∈ A with|x − c| < �, we have|
|

g(x) − g(c)|
|

< �.

Combine with (*), we know ∀ x ∈ A with|x − c| < �, we have||
|

f
(

g(x)
)

− f
(

g(c)
)

|

|

|

< ".

Hence, f◦g is also continuous on A.

Question

Let ∅ ≠ A ⊂ ℝ, Let f ∶ ℝ → ℝ be the distance function from A. That is,

f (x) ∶= Inf
{

|x − a| ∶ a ∈ A
}

.

(a) Show f (x) ≤ |x − y| + f (y) for any x, y ∈ ℝ.
(b) Show f is continuous on ℝ.
(c) Let c ∉ A. Show c is a cluster point of A if and only if f (c) = 0.
(d) Can we drop the assumption c ∉ A in part (c)?

Answer

(a) Pick any x, y ∈ ℝ, a ∈ A, by triangle inequality,|x − a| ≤ |x − y| +|y − a|.

By taking infimum over a ∈ A on both sides, since infimum preserves order, we have

f (x) ≤ |x − y| + f (y).

(b) Fixed any " > 0, x ∈ ℝ, take � = " > 0. If y ∈ ℝ with|x − y| < �, by (a), we have

f (x) − f (y) ≤ |x − y| and f (y) − f (x) ≤ |x − y|, and so|
|

f (x) − f (y)|
|

≤ |x − y| < � = ".

Hence, f is continuous at every point x ∈ ℝ. Hence, f is continuous on ℝ.

(c)(⟹) Suppose c ∉ A is a cluster point of A. Fixed any " > 0,

We can find some a ∈ A, such that 0 ≤ |c − a| < ".

By definition of Inf, f (c) = 0.

(⟸) Suppose f (c) = 0, c ∉ A. Fixed any " > 0, by definition of f (i.e. by definition of Inf),

we can find some a ∈ A, such that|c − a| < ". Note that a ≠ c since a ∈ A and c ∉ A,

that is, ∀ " > 0, ∃ a ∈ A ⧵ {c}, such that|c − a| < ".

Hence, c is a cluster point of A.

(d) NO. Consider the counter example A = {0},

then f (0) = 0 but 0 is NOT a cluster point of A.
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4.2 Uniform Continuity
4.2.1 Definition

Let ∅ ≠ A ⊂ ℝ and f ∶ A → ℝ be a function.

f is said to be Uniformly Continuous on A if

∀ " > 0, ∃ � > 0, s.t. ∀ x, y ∈ A with |x − y| < �, we have |
|

f (x) − f (y)|
|

≤ ".

Remark

(i) The uniform continuity of f is defined on some set but not a point.

(ii) If f is uniformly continuous on A, then f is continuous on A.

4.2.2 Example

(a) f (x) = x is uniformly continuous on ℝ.

(b) f (x) = x2 is uniformly continuous on [a, b] for any a, b ∈ ℝ with a < b.

However, f (x) = x2 is NOT uniformly continuous on ℝ but it is continuous on ℝ.

(c) f (x) = 1
x
is uniformly continuous on [a, b] for any a, b ∈ ℝ with 0 < a < b.

However, f (x) = 1
x
is NOT uniformly continuous on (0, b]

but it is continuous on (0, b] for any b > 0.

4.2.3 Uniform Continuity Theorem

Let f ∶ [a, b] → ℝ be a function for some a, b ∈ ℝ with a < b.

Then f is uniformly continuous on [a, b] if and only if f is continuous on [a, b].

4.2.4 Question

Let f ∶ ℝ → ℝ be a continuous function on ℝ.

(a) If lim
x→+∞

f (x) = L ∈ ℝ and lim
x→−∞

f (x) = L′ ∈ ℝ, then f is uniformly continuous on ℝ.

(b) If f is periodic with period p > 0, that is

f (x + p) = f (x) for any x ∈ ℝ,

then f is uniformly continuous on ℝ.

Answer

(a) Fixed any " > 0, by lim
x→+∞

f (x) = L ∈ ℝ and lim
x→−∞

f (x) = L′ ∈ ℝ,

∃M > 0, s.t. |
|

f (x) − L|
|

< "
4
∀ x ≥M (*) and

∃M ′ < 0, s.t. |
|

f (x) − L′
|

|

< "
4
∀ x ≤M ′ (**).

Note that f is continuous on [M ′,M],

and hence f is uniformly continuous on [M ′,M] by Uniform Continuity Theorem.

Therefore, ∃ �′ > 0, s.t. ∀ x, y ∈ [M ′,M] with|x − y| < �, we have|
|

f (x) − f (y)|
|

< "
2

(***).

Let � ∶= Min{�′,M −M ′} > 0.

Now, pick any x, y ∈ ℝ with|x − y| < �, WLOG, assume x ≤ y,
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There are five cases:

(Case 1) Suppose x, y ∈ [M ′,M], then by (***),|
|

f (x) − f (y)|
|

< "
2
< ".

(Case 2) Suppose x, y ≤M ′, then by (**), we have
|

|

f (x) − f (y)|
|

≤ |

|

f (x) − L′
|

|

+|
|

f (y) − L′
|

|

< "
4
+ "

4
= "

2
< ".

(Case 3) Suppose x, y ≥M , then by (*), we have
|

|

f (x) − f (y)|
|

≤ |

|

f (x) − L|
|

+|
|

f (y) − L|
|

< "
4
+ "

4
= "

2
< ".

(Case 4) Suppose x ≤M ′ ≤ y, then y < M , then using (***) and case 2, we have
|

|

f (x) − f (y)|
|

≤ |

|

f (x) − f (M ′)|
|

+|
|

f (M ′) − f (y)|
|

< "
2
+ "

2
= ".

(Case 5) Suppose x ≤M ≤ y, then x > M ′, then using (***) and case 3, we have
|

|

f (x) − f (y)|
|

≤ |

|

f (x) − f (M)|
|

+|
|

f (M) − f (y)|
|

< "
2
+ "

2
= ".

In any cases, we must have|
|

f (x) − f (y)|
|

< ".

Hence, f is uniformly continuous on ℝ.

(b) Fixed any " > 0, note that f is continuous on [0, p],

hence f is uniformly continuous on [0, p] by Uniform Continuity Theorem.

Hence, ∃ �′ > 0, s.t. ∀ x, y ∈ [0, p] with|x − y| < �′, we have|
|

f (x) − f (y)|
|

< "
2
. (*)

Let � ∶= Min{�′, p} > 0.

Pick any x, y ∈ ℝ with|x − y| < �, WLOG, assume x ≤ y, by division algorithm,

∃! n, m ∈ ℤ, s, t ∈ [0, p), s.t. x = np + s and y = mp + t.

Note that m ≥ n and −p < t − s < p.

Note that p ≥ � > |x − y| = y − x = (m − n)p + (t − s) > (m − n − 1)p.

Since p > 0, we have 0 ≤ m − n < 2, since m, n ∈ ℤ, m − n is either 0 or 1.

(Case 1) Suppose m − n = 0, that is m = n, so|s − t| = |x − y| < � ≤ �′,
then by f is p−periodic and (*), we have
|

|

f (x) − f (y)|
|

= |

|

f (np + s) − f (mp + s)|
|

= |

|

f (s) − f (t)|
|

< "
2
< ".

(Case 2) Suppose m − n = 1,
then|p − s| = p − s ≤ t + p − s = |t + p − s| = |x − y| < � ≤ �′,
and|

|

t − 0|
|

= t ≤ t + p − s = |t + p − s| = |x − y| < � ≤ �′,
then by f is p−periodic and (*), we have

|

|

f (x) − f (y)|
|

≤ |

|

f (np + s) + f (np + p)|
|

+|
|

f (np + p) + f (np + p + t)|
|

= |

|

f (s) − f (p)|
|

+|
|

f (0) − f (t)|
|

< "
2
+ "

2
= ".

In any cases,|
|

f (x) − f (y)|
|

< ".

Hence, f is uniformly continuous on ℝ.

4.3 Maximum Minimum Value Theorem
4.3.1 Main Statement

Let f ∶ [a, b] → ℝ be a continuous function on [a, b] for some a, b ∈ ℝ with a < b.

Then f attains an global maximum AND global minimum on [a, b].

That is, ∃ x∗, x∗ ∈ [a, b], s.t. f (x∗) ≤ f (x) ≤ f (x∗) ∀x ∈ [a, b].
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4.3.2 Question

Let f ∶ ℝ → ℝ be a continuous function on ℝ.

(a) If lim
x→+∞

f (x) = lim
x→−∞

f (x) = L ∈ ℝ,

then f attains an global maximum OR global minimum on ℝ.
(b) With same assumption of (a),

could f attains both global maximum AND global minimum on ℝ?
(c) Could the assumption of (a) be replaced by lim

x→+∞
f (x) = L ∈ ℝ, lim

x→−∞
f (x) = L′ ∈ ℝ?

answer

Let g ∶ ℝ → ℝ defined by g(x) = f (x) − L ∀ x ∈ ℝ.

Note that g is continuous of ℝ with lim
x→+∞

g(x) = lim
x→−∞

g(x) = 0.

There are three cases:

(Case 1) Suppose g(x) = 0 ∀ x ∈ ℝ,
that is g is a zero constant function,
then global maximum of g = global minimum of g = 0 (attains at everywhere).
Hence, global maximum of f = global minimum of f = L (attains at everywhere).

(Case 2) Suppose g(c) > 0 for some c ∈ ℝ.

Take "0 =
g(c)
2

> 0, by lim
x→+∞

g(x) = lim
x→−∞

g(x) = 0 ∈ ℝ,

we can findM ′ < 0 andM > 0, such that|
|

g(x)|
|

< "0 =
g(c)
2

∀x ≥M or x ≤M ′.

In particular, g(x) ≤ g(c)
2

∀x ≥M or x ≤M ′. (*)

Also, we know c ∈ [M ′,M] since x = c does not satisfy|
|

g(x)|
|

<
g(c)
2

.

Note that g is continuous on [M ′,M], by Maximum Minimum Value Theorem,
there exist some x∗ ∈ [M ′,M] ⊂ ℝ, such that g(x∗) ≥ g(x) ∀ x ∈ [M ′,M]. (**)
If x ≥M or x ≤M ′, combine (*) and (**), we have

g(x) ≤ g(c)
2

< g(c) ≤ g(x∗).

This means g(x∗) ≥ g(x) ∀ x ∈ ℝ,
that is f (x∗) ≥ f (x) ∀ x ∈ ℝ by adding L on both sides.
Hence, f attain a global maximum at x∗.

(Case 3) Suppose g(c) < 0 for some c ∈ ℝ.
Then −g(c) > 0 for that c ∈ ℝ, apply (case 2) on −g,
there exist some x∗ ∈ ℝ, such that −g(x∗) ≥ −g(x) ∀ x ∈ ℝ.
That is, g(x∗) ≤ g(x) ∀ x ∈ ℝ and
hence, f (x∗) ≤ f (x) ∀ x ∈ ℝ by adding L on both sides.

However, these f may not attain both global minimum and maximum.

Consider the counter example: f (x) = 1
1 + x2

∀ x ∈ ℝ.

Note that f is well-defined continuous function on ℝ (since 1 + x2 > 0 ∀ x ∈ ℝ)

and lim
x→+∞

f (x) = lim
x→−∞

f (x) = 0.

Also, f attains a global maximum 1 at x = 0.

However, if f attained a global minimum at x = c ∈ ℝ,
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WLOG, assume c > 0, note that f (c + 1) < f (c) which is a contradiction.

Hence, f does NOT attain a global minimum.

If the limit of f as x tends to ±∞ is NOT same, the result may fail.

Consider the counter example: f (x) =
⎧

⎪

⎨

⎪

⎩

1 − 1
1 + x2

, if x ≥ 0
1

1 + x2
− 1, if x < 0

.

Note that f is continuous on ℝ. (please check it at least for x = 0 yourself!)

Also, lim
x→+∞

f (x) = 1 and lim
x→−∞

f (x) = −1.

By same skill above, consider f is increasing on ℝ, (I left it as exercise.)

f does NOT attain ANY global maximum and minimum.

4.4 Intermediate Value Theorem
4.4.1 Main Statement

Let f ∶ [a, b] → ℝ be a continuous function on [a, b] for some a, b ∈ ℝ with a < b.

for any k ∈ ℝ between f (a) and f (b), there exist � ∈ [a, b], such that f (�) = k.

4.4.2 Question

Let f ∶ ℝ → ℝ be a continuous function on ℝ.

If lim
x→+∞

f (x) = +∞ and lim
x→−∞

f (x) = −∞, then f is surjective.

Answer

Pick any y ∈ ℝ,

by lim
x→+∞

f (x) = +∞ and lim
x→−∞

f (x) = −∞, we can findM ′ < 0 andM > 0,

such that f (x) > y ∀ x ≥M and f (x) < y ∀ x ≤M ′.

In particular, f (M) > y > f (M ′).

By Intermediate Value Theorem, we can find x0 ∈ (M ′,M) ⊂ ℝ such that y = f (x0).

That is, ∀ y ∈ ℝ, ∃ x ∈ ℝ, s.t. y = f (x).

Hence, f ∶ ℝ → ℝ is surjective.
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